

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

VIPRA: VIDEO PREDICTION FOR ROBOT ACTIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

Can we turn a video prediction model into a robot policy? Videos, including those of humans or teleoperated robots, capture rich physical interactions. However, most of them lack labeled actions, which limits their use in robot learning. We present **Video Prediction for Robot Actions** (ViPRA), a simple pretraining-finetuning framework that learns continuous robot control from these actionless videos. Instead of directly predicting actions, we train a video-language model to predict *both future visual observations and motion-centric latent actions*, which serve as intermediate representations of scene dynamics. We train these latent actions using perceptual losses and optical flow consistency to ensure they reflect physically grounded behavior. For downstream control, we introduce a chunked *flow matching decoder* that maps latent actions to robot-specific continuous action sequences, using only 100 to 200 teleoperated demonstrations. This approach avoids expensive action annotation, supports generalization across embodiments, and enables smooth, high-frequency continuous control upto 22 Hz via chunked action decoding. Unlike prior latent action works that treat pretraining as autoregressive policy learning, ViPRA explicitly models both what changes and how. Our method outperforms strong baselines, with a 16% gain on the SIMPLER benchmark and a 13% improvement across real world manipulation tasks. We will release models and code at <https://vipra-robot.github.io>.

1 INTRODUCTION

Robots learn by doing, but collecting robot demonstrations, particularly at scale, is expensive, time-consuming, and limited by embodiment. In contrast, videos are abundant. From YouTube clips (Abu-El-Haija et al., 2016) of people performing tasks (Grauman et al., 2022b; 2024; Goyal et al., 2017; Damen et al., 2018) to logs of teleoperated robots (O’Neill et al., 2023), they capture rich physical interactions, diverse objects, and long-horizon behaviors that are difficult to script or reproduce. The challenge is that most of these videos may not include action labels.

At the same time, recent advances in video prediction models (Liu et al., 2024; Blattmann et al., 2023; Singer et al., 2022; Zhou et al., 2022; NVIDIA et al., 2025) open up a new opportunity: learning directly from large corpora of *actionless videos*. Beyond preserving high-level task semantics, these generative models exhibit a strong grasp of object dynamics and fine-grained physical interactions. This naturally leads to a central question: **Can a video prediction model be transformed into a control policy for physical robots?** In this work, we explore this question through a simple and scalable pretraining-finetuning framework that adapts a powerful video-language model (Liu et al., 2024) into a robot policy capable of learning from passive videos.

During pretraining, we co-train on two intuitive objectives: (i) predicting *what* happens next, in the form of *future visual observations*, and (ii) predicting *how* the scene evolves, using a compact intermediate representation known as *latent actions*¹. By training with both objectives, the model learns to capture both semantic intent and physical dynamics. In contrast, prior latent action pretraining methods (Ye et al., 2024b; Bu et al., 2025; Chen et al., 2024; Bjorck et al., 2025) treat pretraining purely as policy learning in latent space, without leveraging video prediction or modeling state transitions, and often use temporally coarse task-centric latent actions. Our framework instead predicts state transitions through video prediction and outputs a sequence of fine-grained *motion-centric*

¹Latent actions can be viewed as action-like tokens that summarize the transition between states without requiring access to ground-truth control commands

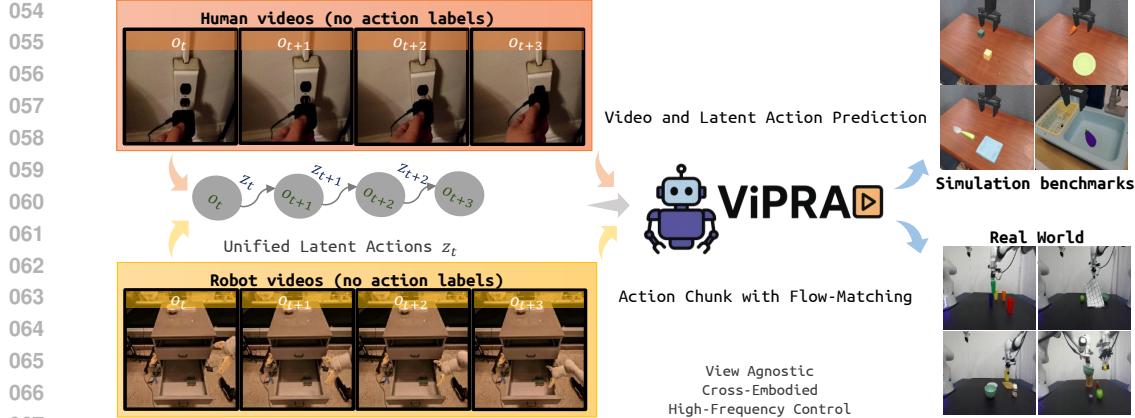


Figure 1: We present ViPRA, which learns generalist robot policies from large-scale actionless videos by extracting motion-centric latent actions, which is used to pretrain a video-language model, and finally, finetuning a flow matching decoder with minimal labeled data for smooth, high-frequency control.

latent actions (3 to 6 Hz) over short horizons, capturing high-frequency dynamics critical for control. We further incorporate optical flow consistency as an additional supervision signal, promoting physically plausible and motion-aware latent representations.

Importantly, our pretraining leverages both unlabeled human and robot videos, which enables generalization across embodiments (see Figure 1, left). This broad exposure to passive visual data sets the foundation for effective finetuning with only a small number of teleoperated robot demonstrations. For finetuning on these demonstrations, we employ a *flow matching decoder* (Lipman et al., 2022) that maps latent actions to smooth, continuous robot action chunks (see Figure 1, right). Unlike prior vision-language-action models (VLAs) (Brohan et al., 2023; Kim et al., 2024; Li et al., 2024a; Black et al., 2024; Qu et al., 2025), which required thousands of hours of labeled action trajectories², our decoder aligns latent transitions with embodiment-specific motor behaviors. This design amortizes inference latency via *action chunking*, enabling smooth, high-frequency control by producing multiple low-level actions in a single forward pass. Our policy can support control rates approaching 22 Hz, to our knowledge matched only by one other 7B-parameter model (Kim et al., 2025).

In summary, our contributions are as follows.

- (i) A scalable method to extract fine-grained motion-centric latent actions from unlabeled human and robot videos using perceptual and optical flow consistency losses.
- (ii) A novel pretraining framework for robot control that jointly predicts future visual states and motion-centric latent actions within a unified video-language model.
- (iii) A data-efficient pretraining–finetuning framework that integrates flow matching and action chunking to enable smooth, high-frequency continuous control, operating at up to 22 Hz.
- (iv) Demonstrate empirical gains of 16% on the SIMPLER benchmark (Li et al., 2024c) and 13% on real world tasks over the strongest prior continuous control baselines.

2 RELATED WORK

Vision-Language-Action Models Vision-Language-Action models (VLAs) (Brohan et al., 2023; Kim et al., 2024; Li et al., 2024a; Black et al., 2024; Qu et al., 2025) extend vision-language models (VLMs) (Touvron et al., 2023; Chen et al., 2023; Driess et al., 2023; Karamcheti et al., 2024; Beyer et al., 2024) by imitation learning on action-labeled robot demonstrations (O’Neill et al., 2023). Recent works explore auxiliary objectives including visual trace prediction (Niu et al., 2024), chain-of-thought reasoning (Wei et al., 2022), and conversational instruction tuning (Li et al., 2024b). However, all existing VLAs require extensive labeled action data, creating a fundamental scalability bottleneck due to the prohibitive cost of data collection. Furthermore, these models focus primarily on grounding language in visual semantics while lacking explicit mechanisms for modeling physical dynamics or temporal structure in action generation. In contrast, ViPRA eliminates the labeled data requirement by leveraging unlabeled videos during pretraining and incorporates temporal dynamics

²10000 hours of pretraining OpenX data (O’Neill et al., 2023) and 5-100 hours of fine-tuning demonstrations

108 through joint prediction of future visual states and multi-step latent actions, which provides robust
 109 priors for high-frequency control.
 110

111 **Robot Learning from Videos** Videos offer a scalable source of information about object dynamics,
 112 task structure, and human behavior. Visual planning methods (Du et al., 2023a; Wu et al., 2023a;
 113 Ko et al., 2023; Du et al., 2024; Baker et al., 2022; Liang et al., 2024; Luo et al., 2025a) use generative
 114 video models to plan in video or video-language space and rely on an inverse dynamics model
 115 to convert predicted frames into actions. While effective for long-horizon reasoning, these methods
 116 often incur high inference costs, limiting their suitability for high-frequency, dexterous control.
 117 Different from the above, policy supervision approaches (Luo et al., 2025a;b) use video models as
 118 supervision or reward sources to train policies.

119 Recent work explores joint training for video generation and action prediction (Li et al., 2025; Guo
 120 et al., 2024), with (Li et al., 2025) also introducing decoupled action decoding to mitigate inference
 121 overhead, but evaluations are mostly on smaller-scale datasets, simulation, and do not demonstrate
 122 scaling to internet-scale passive videos.

123 Other efforts leverage human videos to pretrain visual representations for downstream visuomotor
 124 control (Nair et al., 2022; Dasari et al., 2023; Xiao et al., 2022; Karamcheti et al., 2023), or extract
 125 intermediate cues such as affordances (Bahl et al., 2023; Kannan et al., 2023; Bharadhwaj et al.,
 126 2023; Liu et al., 2022; Goyal et al., 2022), interactions (Zeng et al., 2024), or visual traces (Wen
 127 et al., 2023; Bharadhwaj et al., 2024; Mandikal & Grauman, 2022; Bahl et al., 2022) from unlabeled
 128 videos to guide policy learning. These approaches depend on structured priors or explicit
 129 cue extraction, which can constrain scalability. In contrast, we learn motion-centric latent actions
 130 that capture temporal dynamics and pair them with video-language grounding, enabling scalable
 131 learning directly from large action-free video corpora.

132 **Latent Action Spaces** Latent action representations improve data efficiency by enabling learning
 133 from action-free videos via self-supervised learning (Dwibedi et al., 2018; Liang et al., 2025; Seo
 134 et al., 2022; Schmidt & Jiang, 2024; Cui et al., 2024). Recent methods impose discrete information
 135 bottlenecks with vector quantization encoders (van den Oord et al., 2017) and predict these
 136 tokens during policy learning (Ye et al., 2024a; Lee et al., 2024; Yang et al., 2024a; Bu et al., 2025;
 137 Chen et al., 2024; Bjorck et al., 2025), achieving strong real world results through imitation. Some
 138 train inverse dynamics models on limited labeled demonstrations before applying them to unlabeled
 139 video (Baker et al., 2022; Xu et al., 2023), while others treat latent actions as abstract embodiments
 140 and jointly train policies with inverse dynamics model predictions across embodiments (Jang et al.,
 141 2025). Another line of work uses these abstractions to build world simulators (Gao et al., 2025;
 142 Bruce et al., 2024) or plan in latent spaces (Ha & Schmidhuber, 2018; Weber et al., 2017; Hafner
 143 et al., 2019; 2018; Lee et al., 2019; Wu et al., 2022; Sekar et al., 2020) While these methods capture
 144 physical dynamics effectively, they struggle to generalize to novel settings due to limited semantic
 145 grounding. Video-language models can provide such multimodal grounding (Du et al., 2023a; Ko
 146 et al., 2023; Liang et al., 2024; Guo et al., 2024; Du et al., 2024), but existing approaches are typi-
 147 cally computationally heavy and slow at inference. In contrast to existing methods, ViPRA learns
 148 fine-grained, motion-centric latent actions that capture temporal dynamics while leveraging a video-
 149 language model (Liu et al., 2024) for semantic grounding. We train a unified latent space from
 150 large-scale, action-free human and robot videos, enabling cross-embodiment transfer. By predicting
 151 action chunks during both latent pretraining and real-action finetuning, we amortize inference
 152 latency and achieve smooth, high-frequency control.

153 3 BACKGROUND

154 We defer discussion on VQ-VAE for discrete latent actions, optical flow estimation, behavior
 155 cloning, and flow matching for continuous control to Appendix A.
 156

157 4 VIDEO PREDICTION FOR ROBOT ACTIONS

158 A generalist robotic agent must combine precise low-level control with environment-agnostic high-
 159 level intelligence. Video generation models are well-suited to this goal, as future-state prediction
 160 captures both physical interaction detail and task-related semantic context. Achieving this requires

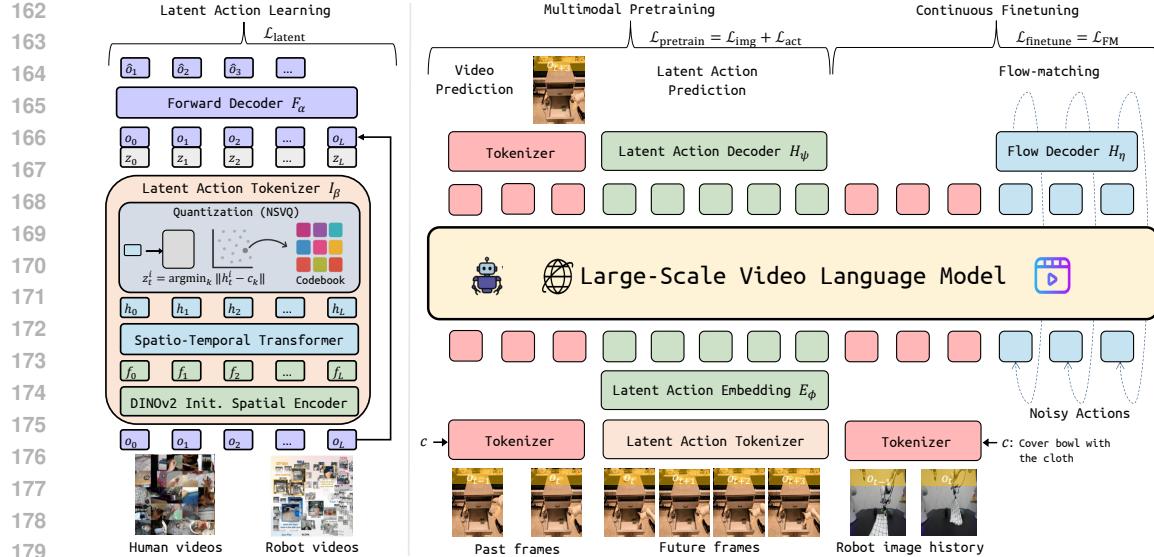


Figure 2: **ViPRA** framework comprises of: (1) **Latent Action Learning** (left): A neural quantization bottleneck extracts discrete latent actions z_t from image sequences $o_{0:L}$ in both human and robot videos, trained via reconstruction loss $\mathcal{L}_{\text{latent}}$ to capture motion-centric dynamics. (2) **Multimodal Pretraining** (center): A video-language model jointly predicts future observations o_{t+H} and latent action sequences $z_{t:t+H-1}$ from past frames (o_{t-1}, o_t) and task description c , using loss $\mathcal{L}_{\text{pretrain}}$. (3) **Continuous Finetuning** (right): A flow matching decoder maps latent actions to continuous robot actions $a_{t:t+H-1}$ using noisy action conditioning and loss \mathcal{L}_{FM} , enabling smooth, high-frequency control.

effectively utilizing large-scale data, architectures that expose motion-centric signals, and stable training pipelines. To this end, we present ViPRA: (i) learning motion-centric discrete latent actions from large-scale human and robot videos without action supervision, guided by perceptual and optical flow consistency; (ii) pretraining a multimodal video-language model to jointly predict future visual observations and latent action sequences, grounding temporal dynamics in semantics; and (iii) finetuning a flow-matching decoder that maps latent actions to smooth, continuous control using only a few hundred demonstrations. This hierarchy leverages the rich physical priors of video models while ensuring the precision needed for real world robot control.

4.1 LATENT ACTION LEARNING FROM ACTIONLESS VIDEOS

We first train a latent action model to represent behavior in both human and robot videos without requiring action supervision. As illustrated in Fig. 2 (left), this phase extracts motion-centric latent actions z_t that captures how the environment changes (inverse dynamics) and reciprocally also models the visual observations in response to these implicit actions (forward prediction).

Given a length- $(L+1)$ observation sequence $o_{0:L} = [o_0, o_1, \dots, o_L]$ sampled from human or robot videos, our objective is to learn discrete latent action tokens $z_t = [z_t^1, z_t^2, \dots, z_t^{N_{\text{latent}}}]$ that encode the motion dynamics at each timestep t . Here, N_{latent} denotes the number of latent action components, and each component z_t^i is quantized from a shared codebook \mathcal{C} of size $|\mathcal{C}| = 8$.

We train an inverse dynamics encoder $I_\beta(z_t \mid o_{0:L})$ that predicts latent action token z_t by conditioning on the full observation sequence $o_{0:L}$. This non-causal design allows the latent action z_t to incorporate both past and future context, making it sensitive to local motion intent—for instance, distinguishing a pickup from a putdown based on surrounding frames. By providing the encoder with the entire clip, we reduce reconstruction ambiguity and force z_t to encode the minimal but sufficient information to explain the local transition.

We jointly train a forward decoder $F_\alpha(\hat{o}_{t+1} \mid o_{0:t}, z_{0:t})$ that predicts the future frame \hat{o}_{t+1} given the history of observations $o_{0:t}$ and latent actions $z_{0:t}$. This reconstruction task ensures that the learned latent actions z_t contain sufficient information to explain scene dynamics. The model is optimized using three complementary loss components: pixel-level L_1 reconstruction loss \mathcal{L}_{rec} for accurate frame prediction, perceptual loss $\mathcal{L}_{\text{LPIPS}}$ (Zhang et al., 2018) for semantic consistency, and optical

216 flow consistency loss $\mathcal{L}_{\text{flow}}$ to encourage physically plausible motion patterns:
 217

$$218 \quad \mathcal{L}_{\text{flow}} = \frac{1}{L} \sum_{t=2}^{L+1} \|\text{OF}(\hat{o}_t, \hat{o}_{t-1}) - \text{OF}(o_t, o_{t-1})\|_1 + \frac{1}{L} \sum_{t=1}^L \|\text{OF}(\hat{o}_t, \hat{o}_{t+1}) - \text{OF}(o_t, o_{t+1})\|_1 \quad (1)$$

221 where $\text{OF}(a, b)$ denotes optical flow between frames a and b computed via RAFT (Teed & Deng,
 222 2020). This loss encourages predicted frames to exhibit motion patterns consistent with ground
 223 truth, supporting temporally coherent dynamics. The total latent action learning loss combines all
 224 components:
 225

$$\mathcal{L}_{\text{latent}} = \mathcal{L}_{\text{rec}} + \lambda_{\text{LPIPS}} \mathcal{L}_{\text{LPIPS}} + \mathbb{I}(\text{step} > \alpha_{\text{flow}}) \lambda_{\text{flow}} \mathcal{L}_{\text{flow}}, \quad (2)$$

226 where the flow loss is activated only after α_{flow} warm-up steps to avoid instability from poor early
 227 reconstructions. Thus, latent actions serve as a representation of scene dynamics effectively bridging
 228 between visual observations and any embodiment-specific control commands. We provide further
 229 architecture details in Appendix B.
 230

231 4.2 LEVERAGING MULTIMODAL VIDEO MODELS FOR ACTION PRETRAINING

233 After obtaining discrete latent actions, we design a pretraining scheme leveraging a powerful multi-
 234 modal video prediction model. Such models are trained on large-scale datasets to jointly reconstruct
 235 video tokens and predict aligned language captions, thereby encoding rich semantic cues and dy-
 236 namic priors about how the world changes in their latent space. By aligning our discrete latent
 237 actions z_t with the outputs of the generative model, we can effectively pretrain a *high-level controller*
 238 that can learn from video clips.

239 To this end, we *jointly* predict future visual tokens and latent actions, unifying dynamic scene under-
 240 standing and abstract control representation in a temporally coherent latent space. Given the most
 241 recent observations (o_{t-1}, o_t) and a task description c , the model predicts a future frame o_{t+H} that is
 242 H steps ahead, along with a latent action sequence $z_{t:t+H-1} = [z_t, z_{t+1}, \dots, z_{t+H-1}]$ representing
 243 the transitions leading to o_{t+H} . This multi-step horizon encourages meaningful and distinct scene
 244 changes, providing robust conditioning for downstream action inference.

245 As shown in Fig. 2 (center), we build on the instruction-tuned LWM-Chat-1M (Liu et al., 2024)
 246 as our base policy G_θ and extend it with two modules for latent action modeling: (i) a **Latent**
 247 **Action Embedding** head E_ϕ that maps each discrete latent token $z_t^i \in \mathcal{C}$ to a d_z -dimensional
 248 vector $\tilde{z}_t^i = E_\phi(z_t^i)$ in the model’s token space, and (ii) a **Latent Action Token Decoder**
 249 H_ψ , a multi-layer perception (MLP) that autoregressively predicts the next latent token $\tilde{z}_t^{i+1} =$
 250 $H_\psi(G_\theta(c, o_{t-1}, o_t, o_{t+H}, \tilde{z}_{t-1}, \tilde{z}_t^{\leq i}))$ from the transformer hidden state till position i . This al-
 251 lows the model to generate latent action sequences in the same autoregressive manner as language
 252 or video tokens, leveraging the multimodal token space learned during pretraining.
 253

254 During training, we apply *teacher forcing* to both visual and action predictions. We use LWM’s VQ-
 255 VAE encoder E_{VQ} to encode ground-truth future frame o_{t+H} into N_{tokens} discrete tokens $x_{t+H} =$
 256 $E_{\text{VQ}}(o_{t+H})$, which serve as supervision targets for the visual prediction $\hat{x}_{t+H} = G_\theta(c, o_{t-1}, o_t)$.
 257 The pretraining objective $\mathcal{L}_{\text{pretrain}}$ combines the visual and action components as:
 258

$$\mathcal{L}_{\text{pretrain}} = \underbrace{\sum_{i=1}^{N_{\text{tokens}}} \text{CE}(\hat{x}_{t+H}^i, x_{t+H}^i)}_{\mathcal{L}_{\text{img}}} + \underbrace{\sum_{k=t}^{t+H-1} \sum_{i=1}^{N_{\text{latent}}} \text{CE}(\hat{z}_k^i, z_k^i)}_{\mathcal{L}_{\text{act}}}, \quad (3)$$

262 where $\text{CE}(a, b)$ denotes the standard cross-entropy loss between logits for a and label b .
 263

264 4.3 CONTINUOUS ADAPTATION

266 While the latent action pretrained video model provides robust semantic grounding, it lacks the
 267 physical precision needed for smooth, low-level robot control. To address this gap, we augment
 268 the pretrained model to output continuous actions, utilizing a flow matching decoder trained on real
 269 robot trajectories. This adaptation enables temporally smooth, physically consistent motor com-
 270 mands conditioned on visual and linguistic contexts.

270 As shown in Fig. 2 (right), we augment the video model G_θ with two action-specific components:
 271 (i) an **Action Encoder** E_γ , and (ii) a **Flow Decoder** H_η . The encoder E_γ embeds continuous noisy
 272 actions $x_s \in \mathbb{R}^{H \times D}$ into the token space, while the decoder H_η predicts a flow field over the action
 273 chunk. Following the flow matching framework from Eq. 7, we sample a target action sequence
 274 $a_{t:t+H-1} \in \mathbb{R}^{H \times D}$, draw a noise sample $x_0 \sim \mathcal{N}(0, I)$, and interpolate:
 275

$$x_s = s \cdot x_0 + (1 - s) \cdot a_{t:t+H-1}, \quad s \sim \text{Beta}(a, b).$$

277 We use $a = 1.5$ and $b = 1$ for sampling from Beta distribution. This noisy input is encoded via
 278 $f_s = E_\gamma(x_s, s)$, and passed into the transformer along with VQ-encoded image tokens of (o_{t-1}, o_t)
 279 and language prompt c . The model predicts a flow field $\hat{g} = H_\eta(G_\theta(c, o_{t-1}, o_t, f_s))$, which is
 280 supervised using the flow matching objective from Eq. 9:
 281

$$\mathcal{L}_{\text{FM}} = \|a_{t:t+H-1} - x_0 - (1 - s) \cdot \hat{g}\|_2^2.$$

284 At inference time, given the visual history (o_{t-1}, o_t) and task instruction c , we iteratively solve for
 285 the continuous action chunk $a_{t:t+H-1}$ using forward Euler integration (Eq. 10) of the predicted flow
 286 field from $s = 0$ to $s = 1$, over 10 uniform steps with $\Delta s = 0.1$. This continuous control refinement
 287 layer injects dynamics consistency and smoothness unavailable to the discrete latent tokens alone.
 288

289 5 EXPERIMENTS

291 To evaluate ViPRA, we conduct extensive experiments in both simulation and the real world to
 292 address the following research questions: (i) Can a generalist policy be trained to leverage both the
 293 physical dynamics and semantic understanding of video models? (ii) Does ViPRA efficiently exploit
 294 large-scale, actionless video data? (iii) Can multimodal pretraining yield strong high-level priors for
 295 downstream policy? (iv) How well does ViPRA adapt to high-frequency continuous control settings?
 296 (v) Does ViPRA outperform methods that do not exploit video foundation models?
 297

298 5.1 ENVIRONMENTS & TRAINING

300 **Training Dataset** For learning latent actions and pretraining the video-language model, we use 198k
 301 human videos from Something-Something v2 (Goyal et al., 2017) and a subset of actionless robot
 302 videos from the OpenX (O’Neill et al., 2023) dataset: 87k Fractal (Brohan et al., 2022) videos, 25.4k
 303 BridgeV2 (Ebert et al., 2021), and 85.6k Kuka (Kalashnikov et al., 2018) videos. We describe training
 304 details and hyperparameters for latent action learning in Appendix B, pretraining in Appendix C,
 305 and flow matching finetuning in Appendix D.

306 **Simulation Benchmarks** Following prior latent action works (Ye et al., 2024b; Bu et al., 2025), we
 307 benchmark ViPRA in SIMPLER (Li et al., 2024c), an open-source suite for evaluating generalist
 308 manipulation policies. We evaluate on four Bridge task with a 7-DoF WidowX arm, a benchmark
 309 designed to test generalization across diverse manipulation goals. Since SIMPLER lacks finetuning
 310 data, we collect 100 diverse multi-task trajectories using a pretrained VLA model (Ye et al., 2024b).
 311 We provide details about our SIMPLER tasks and LIBERO Long benchmarks in Appendix E.

312 **Real World Manipulation** While SIMPLER already provides a strong correlation between sim-
 313 ulated and real world policy performance, we further strengthen our findings with rigorous eval-
 314 uations on physical robots. We evaluate ViPRA on a bimanual setup with two 7-DoF Franka
 315 Panda robots. For single-arm experiments, we finetune on three multi-instruction tasks: (1) pick
 316 up cloth and cover $\langle \text{object} \rangle$, (2) pick up $\langle \text{object}_1 \rangle$ and place on $\langle \text{object}_2 \rangle$, and (3)
 317 pick up $\langle \text{color}_1 \rangle$ cup and stack on $\langle \text{color}_2 \rangle$ cup. We use GELLO (Wu et al., 2023b) tele-
 318 operation to collect 180 trajectories, per task spanning 5 cup colors and 10 object types. For both
 319 simulation and real world settings, we report full success and partial success; partial success is
 320 defined as grasping the correct object, and full success requires completing the task (e.g., placing,
 321 stacking, covering). We evaluate with both seen and unseen objects, textures, colors, and shapes to
 322 test generalization. For real world evaluation, policies run using only a front-facing camera. We
 323 predict action chunks of length $H=14$ and replan after executing the first 7 steps. For this evaluation,
 324 we cap our policies at an effective closed-loop control rate of 3.5 Hz, though they can also operate
 325 at higher frequencies upto 22 Hz.

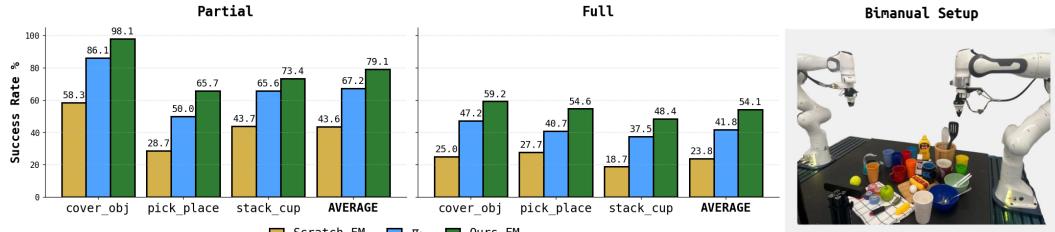


Figure 3: **Real World Evaluations** (Left) We report full and partial success rates on three manipulation tasks. ViPRA-FM significantly outperforms baselines. (Right) We show our physical robot setup and task objects.

Task	Discrete Actions					Continuous Actions				
	Scratch-AR	VPT	OpenVLA	LAPA	ViPRA-AR	Scratch-FM	UniPI	π_0	UniVLA	ViPRA-FM
<i>Success Rates</i>										
StackG2Y	54.2	45.8	25.0	33.3	66.7	16.7	2.7	0.0	-	54.2
Carrot2Plate	58.3	37.5	20.8	41.7	62.5	33.3	2.7	20.8	-	50.0
Spoon2Cloth	37.5	70.8	50.0	66.7	66.7	50.0	0.0	4.17	-	66.7
Eggplant2Bask	58.3	50.0	58.3	70.8	83.3	66.7	0.0	83.3	-	79.2
AVG	52.1	51.0	38.6	53.1	69.8	41.7	1.7	27.1	42.7	62.5
<i>Grasp Rates</i>										
StackG2Y	62.5	62.5	70.8	66.7	66.7	45.8	20.8	12.5	-	62.5
Carrot2Plate	54.2	54.2	37.5	62.5	62.5	45.8	33.2	25.0	-	54.2
Spoon2Cloth	75.0	79.2	75.0	87.5	75.0	62.5	22.2	16.7	-	79.2
Eggplant2Bask	66.7	70.8	91.7	79.2	100	87.5	16.0	91.7	-	91.7
AVG	65.6	66.7	68.8	73.9	76.1	60.4	23.1	36.5	50.0	71.9

Table 1: We report success rates and grasp rates on four bridge tasks in SIMPLER benchmark suite.

5.2 BASELINES

We evaluate ViPRA against strong baselines across discrete and continuous action formulations.

Scratch. As a reference, Scratch finetunes the video-language backbone (LWM) (Liu et al., 2024) directly on downstream tasks with image history and action chunking, without any pretraining. It establishes baseline performance when no latent action or video-based pretraining is used.

VLA baselines. We include OpenVLA (Kim et al., 2024) and π_0 Black et al. (2024). OpenVLA discretizes actions and adds a one-step autoregressive (AR) action predictor on top of a Prismatic-7B (Karamchetti et al., 2024), while π_0 augments a PaliGemma-3B (Beyer et al., 2024) with a chunked flow matching (FM) decoder. Both use action-labeled robot demos from OpenX (O’Neill et al., 2023) containing 970k trajectories, while π_0 also uses proprietary robot data.

Latent action baselines. We include LAPA (Ye et al., 2024b) and UniVLA (Bu et al., 2025), both of which learn one-step temporally coarse latent actions without video prediction during pretraining. UniVLA improves upon LAPA by learning language-conditioned task-centric actions in DINOv2 space. UniVLA uses a Prismatic-7B backbone with a L1 action decoder, whereas LAPA uses an LWM backbone with one-step AR prediction. Both rely on OpenX demos, with UniVLA additionally leveraging Ego4D (Grauman et al., 2022a) and GNM (Yang et al., 2024b).

Video learning baselines. We include UniPI (Du et al., 2024) and VPT (Baker et al., 2022), both of which leverage videos for pretraining. UniPI trains a video diffusion model and trains an IDM to recover actions, while VPT trains an IDM on labeled data to extract pseudo-actions that are then used to pretrain an LWM backbone. Reported results are from (Ye et al., 2024b), which evaluated them on SIMPLER in a comparable setting.

We include both ViPRA-AR, aligned with discrete autoregressive baselines, and ViPRA-FM, aligned with continuous flow-matching methods.

5.3 SIMULATION RESULTS

As shown in Table 1, ViPRA achieves the best average success rate in both discrete and continuous settings. In the **discrete setting**, ViPRA-AR surpasses LAPA and OpenVLA by a large margin (69.8% vs. 53.1% and 38.6%), excelling in precision-heavy tasks such as StackG2Y. In the **continuous setting**, ViPRA-FM outperforms Scratch-FM by 20.8%, π_0 by 35.4%, and UniVLA by 19.8%, showing the benefits of motion-centric latents and multimodal video pretraining over training from scratch. Interestingly, due to the low noise and low ambiguity of the simulation setting, we find that

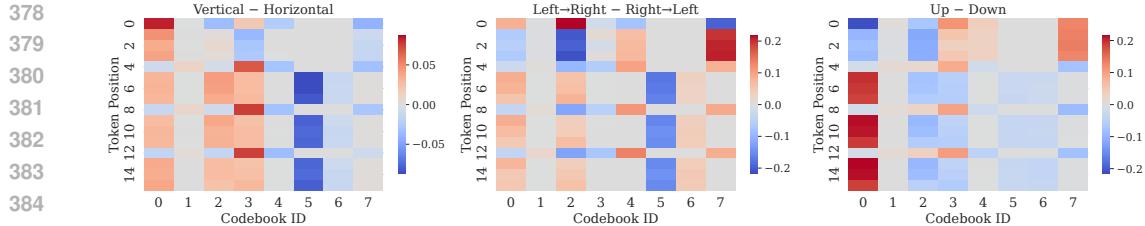


Figure 4: Positional codebook usage differences across action categories. Each heatmap shows the difference in per-position token usage between two groups: (left) vertical vs. horizontal, (middle) left → right vs. right → left, and (right) up vs. down. ViPRA learns positionally sensitive codes, with certain entries (e.g., 0, 2, 5) showing systematic variation, indicating that both token index and positions encode action dynamics.

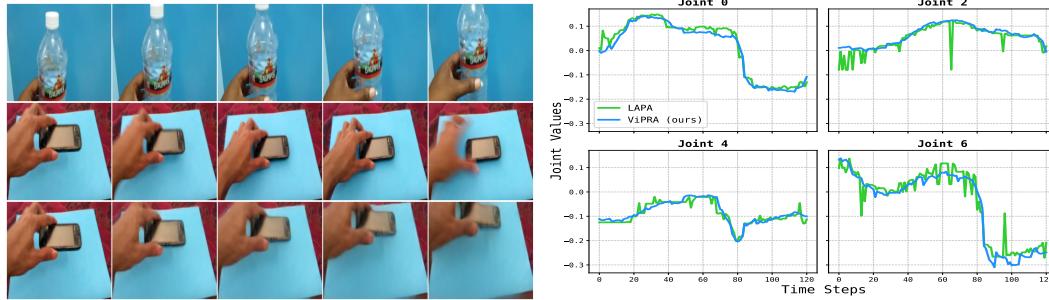


Figure 5: **Latent action transfer rollouts:** (Top) Video $o_{0:4}^{\text{UP}}$ with hand moving the bottle *up*. (Middle) Video $o_{0:4}^{\text{DOWN}}$ with hand putting the phone *down*. (Bottom) Video $o_{0:4}^{\text{UP}} \rightarrow o_{0:4}^{\text{DOWN}}$ with hand picking the phone *up*. Figure 6: **Action smoothness:** ViPRA-FM (blue) produces smooth, continuous trajectories, while LAPA (green) exhibits local discontinuities and random spikes. First, *up* latents are extracted using the inverse model, then the forward model and the overall trend. During real world deployment, such first *down* frame to rollout an *up* video $o_{0:4}^{\text{DOWN} \rightarrow \text{UP}}$ = discontinuities triggered the emergency brake mechanism of the robot due to abrupt motor torque jumps.

ViPRA-AR outperforms the more expressive ViPRA-FM, which is slower to converge. However, ViPRA-FM achieves competitive performance, outperforming all other continuous/discrete baselines. ViPRA also surpasses other video learning approaches *i.e.*, UniPI and VPT. UniPI frequently generates action sequences that diverge from the given instruction in longer-horizon settings, while VPT provides only limited gains, indicating that IDM-derived pseudo-labels are sensitive to environment shifts. In contrast, ViPRA’s joint use of latent action prediction and future state modeling yields stronger cross-environment transfer and more reliable task execution.

5.4 REAL WORLD RESULTS

Figure 3 shows results on three real-world manipulation tasks. ViPRA-FM attains the best performance with a 54.1% average success rate, outperforming π_0 (40.1%) and Scratch-FM (23.8%). It also demonstrates robust retry behavior, repeatedly attempting grasps after failures, which leads to very high partial success rates—especially in Cover-Obj, where the cloth is reliably grasped even if not always placed correctly. While π_0 benefits from task-specific fine-tuning, ViPRA-FM achieves higher success with far less labeled data by leveraging dynamics priors from unlabeled videos. We exclude discrete action models from real-world evaluation, as their bin-based predictions exhibited unstable spikes under physical noise, often triggering emergency stops on the Franka arm. We provide additional analysis on generalization and robustness in Appendix G and challenging bimanual task evaluations in Appendix H.

5.5 ABLATIONS & ANALYSIS

Isolating effect of future state and latent prediction. Table 2 disentangles the contributions of future state prediction and latent action chunking. The LAPA baseline (latent-only) reaches 53.1%, while adding state prediction in ViPRA-AC boosts performance to 59.2%, showing that anticipating future observations improves control even with 1-step latents. Removing state prediction from our setup in ViPRA-SP2 causes a drop from 69.8% to 59.4% (AR) and from 62.5% to 53.2% (FM), underscoring its importance for policy transfer. A state-only variant ViPRA-LA achieves 60.7%,

432 comparable to ViPRA-AC but still below the full model, indicating that state prediction alone is not
 433 sufficient. Finally, adding state prediction at finetuning ViPRA+SP3 degrades performance (53.1%
 434 AR, 31.3% FM), since the autoregressive structure couples action prediction with video prediction,
 435 causing compounding errors that drift irrecoverably on out-of-distribution states. ViPRA mitigates
 436 this by jointly predicting future visual tokens and latent action chunks during pretraining only.

437 **Effect of action chunking.** We apply chunking (Zhao
 438 et al., 2023) in both latent and real action spaces: during
 439 pretraining the model predicts latent action sequences,
 440 and during finetuning it outputs continuous chunks via
 441 flow matching. Removing chunking in ViPRA -AC re-
 442 duces performance to 59.2% (AR) and 44.8% (FM), as
 443 single-step actions fail to capture smooth temporal dy-
 444 namics. By combining chunking with future state pre-
 445 diction, the full model achieves the best results of 69.8%
 446 (AR) and 62.5% (FM), showing that the two objectives
 447 complement each other. Finally, action chunking is not
 448 only critical in pretraining but also enables robust, high-
 449 frequency control at test time. With KV caching, ViPRA’s
 450 flow matching decoder runs at 1.95 Hz per chunk, sup-
 451 porting effective control rates up to 22 Hz on hardware (chunk size 14). We provide additional dis-
 452 cussion on the connection between action chunking and high-frequency execution in Appendix G.5.

453 **ViPRA enables smooth continuous control.** To assess action smoothness, we compare ViPRA-FM
 454 (blue) with LAPA (Ye et al., 2024b) (green), a discrete policy, during closed-loop rollout. Both mod-
 455 els are loaded into our inference pipeline and replayed over trajectories from the finetuning dataset,
 456 simulating deployment under real visual observations. As shown in Figure 6, both methods fol-
 457 low the intended trend, but LAPA exhibits sharp local spikes at contact events or occlusions, where
 458 small perceptual shifts trigger abrupt bin flips. In contrast, ViPRA-FM’s flow matching head yields
 459 smooth, demonstration-aligned commands. Since such discontinuities are unsafe on hardware, we
 460 restrict real world comparisons to continuous baselines. We provide more analysis on discrete and
 461 continuous policies in Appendix F, showing how quantization, loss design, and control space affect
 462 action smoothness and deployment.

462 **Latent action analysis.** In Figure 5, a cross-video rollout test illustrates the correlation between
 463 latent actions and real action dynamics: injecting latents encoding upward motion from one video
 464 (top) into the opening frame of a downward moving video (middle) causes the reconstructions to
 465 move upward (bottom), demonstrating transferable, dynamics-aware semantics. Finally, Figure 4
 466 analyzes codebook usage across categories by computing token-position \times code-index histograms.
 467 The results indicate that both the choice of codebook entry and its position within the latent action
 468 sequence encode structured information about motion direction and dynamics.

471 6 CONCLUSION AND FUTURE WORK

472
 473 Video-language models provide a strong starting point for generalist robotic agents, as they capture
 474 both semantic intent and temporal dynamics crucial for real-world actions. Building on this, we
 475 introduced ViPRA, which learns motion-centric latent actions from large-scale actionless videos,
 476 pretrains a video-language model to jointly predict future states and latent actions, and refines these
 477 priors into smooth, high-frequency motor commands with a flow-matching decoder trained on only
 478 a few hundred demonstrations. Extensive evaluations in simulation and on real robots show that
 479 ViPRA outperforms methods relying solely on semantic pretraining, offering a scalable blueprint
 480 for general-purpose agents.

481 A key perspective is that the latent action decoder functions as a world model: given latent actions, it
 482 predicts future observations and can be conditioned on policy-sampled latents to generate multiple
 483 visual plans. This can enable alignment via reinforcement learning and test-time scaling through
 484 planning trees, where VLMs or heuristic functions act as reward models. Looking forward, extending
 485 ViPRA to dynamic, unstructured environments and integrating richer sensing modalities (e.g.,
 486 wrist cameras, proprioception, tactile feedback, depth) remain exciting directions.

Exp.	Pretrain	Finetune	Succ.
LAPA	1-step L	1-step A	53.1
ViPRA-AR	FS + H -step L	H -step A	69.8
-AC	FS + 1-step L	1-step A	59.2
-SP2	H -step L	H -step A	59.4
-LA	FS only	H -step A	60.7
+SP3	H -step L	FS + H -step A	53.1
ViPRA-FM	FS + H -step L	H -step A	62.5
-AC	FS + 1-step L	1-step A	44.8
-SP2	H -step L	H -step A	53.2
+SP3	H -step L	FS + H -step A	31.3

Table 2: Ablation of future state pred., latent pred., and action chunking. Shorthand: FS = future state pred., L = latent action, A = action pred., H =14 chunk size.

486 7 REPRODUCIBILITY
487

488 All models and datasets used in our work are taken from open-sourced components. We take the pub-
489 licly released LWM-Chat-1M (Liu et al., 2024) as our base video-language model and build on top
490 of that. For latent action learning and pretraining video-language model, we use publicly available
491 datasets: Something-Something (Goyal et al., 2017), Fractal (Brohan et al., 2022), BridgeV2 (Ebert
492 et al., 2021), and Kuka (Kalashnikov et al., 2018). For SIMPLER (Li et al., 2024c) benchmarks, we
493 collected finetuning trajectories by deploying a pretrained VLA model (Ye et al., 2024b). We will
494 release this dataset for the community to reproduce our benchmarks. Moreover, we describe training
495 details, hyperparameters, and model architecture for latent action learning in Appendix B, pretrain-
496 ing in Appendix C, and flow matching finetuning in Appendix D. We will release code, models, la-
497 tent action labeled pretraining data and benchmark scripts at <https://vipra-robot.github.io>.

498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George Toderici, Balakrishnan
543 Varadarajan, and Sudheendra Vijayanarasimhan. Youtube-8m: A large-scale video classification
544 benchmark, 2016. URL <https://arxiv.org/abs/1609.08675>.

545 Shikhar Bahl, Abhinav Gupta, and Deepak Pathak. Human-to-robot imitation in the wild. *arXiv*
546 preprint arXiv:2207.09450, 2022.

547 Shikhar Bahl, Russell Mendonca, Lili Chen, Unnat Jain, and Deepak Pathak. Affordances from hu-
548 man videos as a versatile representation for robotics. In *Proceedings of the IEEE/CVF Conference*
549 *on Computer Vision and Pattern Recognition*, pp. 13778–13790, 2023.

550 Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
551 Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
552 unlabeled online videos. *Advances in Neural Information Processing Systems*, 35:24639–24654,
553 2022.

554 Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel Salz,
555 Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, et al.
556 Paligemma: A versatile 3b vlm for transfer. *arXiv preprint arXiv:2407.07726*, 2024.

557 Homanga Bharadhwaj, Abhinav Gupta, Shubham Tulsiani, and Vikash Kumar. Zero-shot robot
558 manipulation from passive human videos. *arXiv preprint arXiv:2302.02011*, 2023.

559 Homanga Bharadhwaj, Roozbeh Mottaghi, Abhinav Gupta, and Shubham Tulsiani. Track2act: Pre-
560 dicting point tracks from internet videos enables diverse zero-shot robot manipulation, 2024.

561 Johan Bjorck, Fernando Castañeda, Nikita Cherniakov, Xingye Da, Runyu Ding, Linxi Fan,
562 Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr0ot n1: An open foundation model
563 for generalist humanoid robots. *arXiv preprint arXiv:2503.14734*, 2025.

564 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
565 Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. Pi-zero: A vision-language-action flow
566 model for general robot control. *arXiv preprint arXiv:2410.24164*, 2024.

567 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
568 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
569 latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023.

570 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
571 Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
572 transformer for real-world control at scale. *arXiv preprint arXiv:2212.06817*, 2022.

573 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
574 Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
575 models transfer web knowledge to robotic control. *arXiv preprint arXiv:2307.15818*, 2023.

576 Jake Bruce, Michael Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
577 Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, Yusuf Aytar, Sarah Bechtel,
578 Feryal Behbahani, Stephanie Chan, Nicolas Heess, Lucy Gonzalez, Simon Osindero, Sher-
579 jil Ozair, Scott Reed, Jingwei Zhang, Konrad Zolna, Jeff Clune, Nando de Freitas, Satinder
580 Singh, and Tim Rocktäschel. Genie: Generative interactive environments, 2024. URL
581 <https://arxiv.org/abs/2402.15391>.

582 Qingwen Bu, Yanting Yang, Jisong Cai, Shenyuan Gao, Guanghui Ren, Maoqing Yao, Ping Luo,
583 and Hongyang Li. Univla: Learning to act anywhere with task-centric latent actions, 2025. URL
584 <https://arxiv.org/abs/2505.06111>.

585 Xi Chen, Josip Djolonga, Piotr Padlewski, Basil Mustafa, Soravit Changpinyo, Jialin Wu, Car-
586 los Riquelme Ruiz, Sebastian Goodman, Xiao Wang, Yi Tay, et al. Pali-x: On scaling up a
587 multilingual vision and language model. *arXiv preprint arXiv:2305.18565*, 2023.

594 Yi Chen, Yuying Ge, Yizhuo Li, Yixiao Ge, Mingyu Ding, Ying Shan, and Xihui Liu. Moto: Latent
 595 motion token as the bridging language for robot manipulation. *arXiv preprint arXiv:2412.04445*,
 596 2024.

597 Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran
 598 Song. Diffusion policy: Visuomotor policy learning via action diffusion. In *Proceedings of*
 599 *Robotics: Science and Systems (RSS)*, 2023.

600 Zichen Cui, Hengkai Pan, Aadhithya Iyer, Siddhant Haldar, and Lerrel Pinto. Dynamo: In-domain
 601 dynamics pretraining for visuo-motor control. *Advances in Neural Information Processing Sys-*
 602 *tems*, 37:33933–33961, 2024.

603 Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evangelos
 604 Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al. Scaling egocentric
 605 vision: The epic-kitchens dataset. In *Proceedings of the European Conference on Computer*
 606 *Vision (ECCV)*, pp. 720–736, 2018.

607 Sudeep Dasari, Mohan Kumar Srirama, Unnat Jain, and Abhinav Gupta. An unbiased look at
 608 datasets for visuomotor pre-training. In *Conference on Robot Learning*, pp. 1183–1198. PMLR,
 609 2023.

610 Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
 611 Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar,
 612 Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc
 613 Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence. Palm-e: An embodied
 614 multimodal language model. In *arXiv preprint arXiv:2303.03378*, 2023.

615 Yilun Du, Mengjiao Yang, Pete Florence, Fei Xia, Ayzaan Wahid, Brian Ichter, Pierre Sermanet,
 616 Tianhe Yu, Pieter Abbeel, Joshua B. Tenenbaum, Leslie Kaelbling, Andy Zeng, and Jonathan
 617 Tompson. Video language planning, 2023a. URL <https://arxiv.org/abs/2310.10625>.

618 Yilun Du, Sherry Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Josh Tenenbaum, Dale Schuurmans, and
 619 Pieter Abbeel. Learning universal policies via text-guided video generation. *Advances in Neural*
 620 *Information Processing Systems*, 36, 2024.

621 Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
 622 Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
 623 models. *arXiv preprint arXiv:2302.06692*, 2023b.

624 Debidatta Dwibedi, Jonathan Tompson, Corey Lynch, and Pierre Sermanet. Learning actionable rep-
 625 resentations from visual observations. In *2018 IEEE/RSJ international conference on intelligent*
 626 *robots and systems (IROS)*, pp. 1577–1584. IEEE, 2018.

627 Frederik Ebert, Yanlai Yang, Karl Schmeckpeper, Bernadette Bucher, Georgios Georgakis, Kostas
 628 Daniilidis, Chelsea Finn, and Sergey Levine. Bridge data: Boosting generalization of robotic
 629 skills with cross-domain datasets. *arXiv preprint arXiv:2109.13396*, 2021.

630 Shenyuan Gao, Siyuan Zhou, Yilun Du, Jun Zhang, and Chuang Gan. Adaworld: Learning adaptable
 631 world models with latent actions. In *International Conference on Machine Learning (ICML)*,
 632 2025.

633 Mohit Goyal, Sahil Modi, Rishabh Goyal, and Saurabh Gupta. Human hands as probes for interac-
 634 tive object understanding. In *CVPR*, 2022.

635 Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne West-
 636 phal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag, et al.
 637 The “something something” video database for learning and evaluating visual common sense. In
 638 *ICCV*, 2017.

639 Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Gird-
 640 har, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world in
 641 3,000 hours of egocentric video. In *CVPR*, 2022a.

648 Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Gird-
 649 har, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world in
 650 3,000 hours of egocentric video. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 651 and *Pattern Recognition*, pp. 18995–19012, 2022b.

652 Kristen Grauman, Andrew Westbury, Lorenzo Torresani, Kris Kitani, Jitendra Malik, Triantafyllos
 653 Afouras, Kumar Ashutosh, Vijay Baiyya, Siddhant Bansal, Bikram Boote, et al. Ego-exo4d:
 654 Understanding skilled human activity from first-and third-person perspectives. In *Proceedings of*
 655 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 19383–19400, 2024.

656 Yanjiang Guo, Yucheng Hu, Jianke Zhang, Yen-Jen Wang, Xiaoyu Chen, Chaochao Lu, and Jianyu
 657 Chen. Prediction with action: Visual policy learning via joint denoising process. In *The Thirty-
 658 eighth Annual Conference on Neural Information Processing Systems*, 2024.

659 David Ha and Jürgen Schmidhuber. World models. *arXiv preprint arXiv:1803.10122*, 2018.

660 Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
 661 Davidson. Learning latent dynamics for planning from pixels. *arXiv preprint arXiv:1811.04551*,
 662 2018.

663 Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
 664 behaviors by latent imagination. *arXiv preprint arXiv:1912.01603*, 2019.

665 Haoran He, Yang Zhang, Liang Lin, Zhongwen Xu, and Ling Pan. Pre-trained video generative
 666 models as world simulators, 2025. URL <https://arxiv.org/abs/2502.07825>.

667 Joel Jang, Seonghyeon Ye, Zongyu Lin, Jiannan Xiang, Johan Bjorck, Yu Fang, Fengyuan Hu,
 668 Spencer Huang, Kaushil Kundalia, Yen-Chen Lin, Loic Magne, Ajay Mandlekar, Avnish Narayan,
 669 You Liang Tan, Guanzhi Wang, Jing Wang, Qi Wang, Yinzen Xu, Xiaohui Zeng, Kaiyuan Zheng,
 670 Ruijie Zheng, Ming-Yu Liu, Luke Zettlemoyer, Dieter Fox, Jan Kautz, Scott Reed, Yuke Zhu, and
 671 Linxi Fan. Dreamgen: Unlocking generalization in robot learning through video world models,
 672 2025. URL <https://arxiv.org/abs/2505.12705>.

673 Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
 674 Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforce-
 675 ment learning for vision-based robotic manipulation. In *Conference on Robot Learning*, pp. 651–
 676 673. PMLR, 2018.

677 Aditya Kannan, Kenneth Shaw, Shikhar Bahl, Pragna Mannam, and Deepak Pathak. Deft: Dexterous
 678 fine-tuning for real-world hand policies. *arXiv preprint arXiv:2310.19797*, 2023.

679 Siddharth Karamcheti, Suraj Nair, Annie S Chen, Thomas Kollar, Chelsea Finn, Dorsa Sadigh,
 680 and Percy Liang. Language-driven representation learning for robotics. *arXiv preprint*
 681 *arXiv:2302.12766*, 2023.

682 Siddharth Karamcheti, Suraj Nair, Ashwin Balakrishna, Percy Liang, Thomas Kollar, and Dorsa
 683 Sadigh. Prismatic vlms: Investigating the design space of visually-conditioned language models.
 684 In *Forty-first International Conference on Machine Learning*, 2024.

685 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
 686 Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
 687 vision-language-action model. *arXiv preprint arXiv:2406.09246*, 2024.

688 Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Opti-
 689 mizing speed and success, 2025.

690 Po-Chen Ko, Jiayuan Mao, Yilun Du, Shao-Hua Sun, and Joshua B Tenenbaum. Learning to act
 691 from actionless videos through dense correspondences. *arXiv preprint arXiv:2310.08576*, 2023.

692 Wilhelm Kutta. *Beitrag zur näherungsweisen Integration totaler Differentialgleichungen*. Teubner,
 693 1901.

702 Alex X Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent actor-critic:
 703 Deep reinforcement learning with a latent variable model. *arXiv preprint arXiv:1907.00953*,
 704 2019.

705

706 Seungjae Lee, Yibin Wang, Haritheja Etukuru, H Jin Kim, Nur Muhammad Mahi Shafullah, and
 707 Lerrel Pinto. Behavior generation with latent actions. *arXiv preprint arXiv:2403.03181*, 2024.

708

709 Qixiu Li, Yaobo Liang, Zeyu Wang, Lin Luo, Xi Chen, Mozheng Liao, Fangyun Wei, Yu Deng,
 710 Sicheng Xu, Yizhong Zhang, et al. Cogact: A foundational vision-language-action model for syn-
 711 ergizing cognition and action in robotic manipulation. *arXiv preprint arXiv:2411.19650*, 2024a.

712

713 Shuang Li, Yihuai Gao, Dorsa Sadigh, and Shuran Song. Unified video action model. *arXiv preprint*
 714 *arXiv:2503.00200*, 2025.

715

716 Xiang Li, Cristina Mata, Jongwoo Park, Kumara Kahatapitiya, Yoo Sung Jang, Jinghuan Shang,
 717 Kanchana Ranasinghe, Ryan Burgert, Mu Cai, Yong Jae Lee, et al. Llara: Supercharging robot
 718 learning data for vision-language policy. *arXiv preprint arXiv:2406.20095*, 2024b.

719

720 Xuanlin Li, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier Mees, Homer Rich Walke, Chuyuan Fu,
 721 Ishikaa Lunawat, Isabel Sieh, Sean Kirmani, Sergey Levine, Jiajun Wu, Chelsea Finn, Hao Su,
 722 Quan Vuong, and Ted Xiao. Evaluating real-world robot manipulation policies in simulation.
 723 *arXiv preprint arXiv:2405.05941*, 2024c.

724

725 Anthony Liang, Pavel Czempin, Matthew Hong, Yutai Zhou, Erdem Biyik, and Stephen Tu. Clam:
 726 Continuous latent action models for robot learning from unlabeled demonstrations. *arXiv preprint*
 727 *arXiv:2505.04999*, 2025.

728

729 Junbang Liang, Ruoshi Liu, Ege Ozguroglu, Sruthi Sudhakar, Achal Dave, Pavel Tokmakov, Shuran
 730 Song, and Carl Vondrick. Dreamitate: Real-world visuomotor policy learning via video genera-
 731 tion. *arXiv preprint arXiv:2406.16862*, 2024.

732

733 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 734 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

735

736 Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
 737 Benchmarking knowledge transfer for lifelong robot learning, 2023. URL <https://arxiv.org/abs/2306.03310>.

738

739 Hao Liu, Wilson Yan, Matei Zaharia, and Pieter Abbeel. World model on million-length video and
 740 language with blockwise ringattention. *arXiv preprint arXiv:2402.08268*, 2024.

741

742 Shaowei Liu, Subarna Tripathi, Somdeb Majumdar, and Xiaolong Wang. Joint hand motion and
 743 interaction hotspots prediction from egocentric videos. In *CVPR*, 2022.

744

745 Calvin Luo, Zilai Zeng, Yilun Du, and Chen Sun. Solving new tasks by adapting internet video
 746 knowledge. In *The Thirteenth International Conference on Learning Representations*, 2025a.

747

748 Calvin Luo, Zilai Zeng, Mingxi Jia, Yilun Du, and Chen Sun. Self-adapting improvement loops for
 749 robotic learning, 2025b. URL <https://arxiv.org/abs/2506.06658>.

750

751 Priyanka Mandikal and Kristen Grauman. Dexvip: Learning dexterous grasping with human hand
 752 pose priors from video. In *Conference on Robot Learning*, pp. 651–661. PMLR, 2022.

753

754 Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A univer-
 755 sal visual representation for robot manipulation. *arXiv preprint arXiv:2203.12601*, 2022.

756

757 Dantong Niu, Yuvan Sharma, Giscard Biamby, Jerome Quenum, Yutong Bai, Baifeng Shi, Trevor
 758 Darrell, and Roei Herzig. Llarva: Vision-action instruction tuning enhances robot learning. *arXiv*
 759 *preprint arXiv:2406.11815*, 2024.

756 NVIDIA, Niket Agarwal, Arslan Ali, Maciej Bala, Yogesh Balaji, Erik Barker, Tiffany Cai, Prithvi-
 757 jit Chattopadhyay, Yongxin Chen, Yin Cui, Yifan Ding, Daniel Dworakowski, Jiaojiao Fan,
 758 Michele Fenzi, Francesco Ferroni, Sanja Fidler, Dieter Fox, Songwei Ge, Yunhao Ge, Jinwei
 759 Gu, Siddharth Gururani, Ethan He, Jiahui Huang, Jacob Huffman, Pooya Jannaty, Jingyi Jin,
 760 Seung Wook Kim, Gergely Klár, Grace Lam, Shiyi Lan, Laura Leal-Taxe, Anqi Li, Zhaoshuo
 761 Li, Chen-Hsuan Lin, Tsung-Yi Lin, Huan Ling, Ming-Yu Liu, Xian Liu, Alice Luo, Qianli Ma,
 762 Hanzi Mao, Kaichun Mo, Arsalan Mousavian, Seungjun Nah, Sriharsha Niverty, David Page, De-
 763 spoina Paschalidou, Zeeshan Patel, Lindsey Pavao, Morteza Ramezanali, Fitsum Reda, Xiaowei
 764 Ren, Vasanth Rao Naik Sabavat, Ed Schmerling, Stella Shi, Bartosz Stefaniak, Shitao Tang, Lyne
 765 Tchapmi, Przemek Tredak, Wei-Cheng Tseng, Jibin Varghese, Hao Wang, Haoxiang Wang, Heng
 766 Wang, Ting-Chun Wang, Fangyin Wei, Xinyue Wei, Jay Zhangjie Wu, Jiaoshu Xu, Wei Yang,
 767 Lin Yen-Chen, Xiaohui Zeng, Yu Zeng, Jing Zhang, Qinsheng Zhang, Yuxuan Zhang, Qingqing
 768 Zhao, and Artur Zolkowski. Cosmos world foundation model platform for physical ai, 2025. URL
 769 <https://arxiv.org/abs/2501.03575>.

770 Abby O'Neill, Abdul Rehman, Abhinav Gupta, Abhiram Maddukuri, Abhishek Gupta, Ab-
 771 hishek Padalkar, Abraham Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, et al. Open x-
 772 embodiment: Robotic learning datasets and rt-x models. *arXiv preprint arXiv:2310.08864*, 2023.

773 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 774 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 775 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

776 Delin Qu, Haoming Song, Qizhi Chen, Yuanqi Yao, Xinyi Ye, Yan Ding, Zhigang Wang, Jia Yuan
 777 Gu, Bin Zhao, Dong Wang, and Xuelong Li. Spatialvlva: Exploring spatial representations for
 778 visual-language-action model, 2025. URL <https://arxiv.org/abs/2501.15830>.

779 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 780 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 781 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 782 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 783 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 784 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2024.

785 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 786 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 787 Sutskever. Learning transferable visual models from natural language supervision. *CoRR*,
 788 abs/2103.00020, 2021. URL <https://arxiv.org/abs/2103.00020>.

789 Carl Runge. Über die numerische auflösung von differentialgleichungen. *Mathematische Annalen*,
 790 46(2):167–178, 1895.

791 Dominik Schmidt and Minqi Jiang. Learning to act without actions, 2024. URL <https://arxiv.org/abs/2312.10812>.

792 Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
 793 Planning to explore via self-supervised world models. *ICML*, 2020.

794 Younggyo Seo, Kimin Lee, Stephen L James, and Pieter Abbeel. Reinforcement learning with
 795 action-free pre-training from videos. In *International Conference on Machine Learning*, pp.
 796 19561–19579. PMLR, 2022.

797 Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry
 798 Yang, Oron Ashual, Oran Gafni, et al. Make-a-video: Text-to-video generation without text-video
 799 data. *arXiv preprint arXiv:2209.14792*, 2022.

800 Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In *Computer
 801 Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
 802 Part II 16*, pp. 402–419. Springer, 2020.

803 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 804 lay Bashlykov, Soumya Batra, Prajwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 805 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

810 Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdul-
 811 mohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, Olivier Hénaff,
 812 Jeremiah Harmsen, Andreas Steiner, and Xiaohua Zhai. Siglip 2: Multilingual vision-language
 813 encoders with improved semantic understanding, localization, and dense features, 2025.

814 Mohammad Hassan Vali and Tom Bäckström. Nsvq: Noise substitution in vector quantization for
 815 machine learning. *IEEE Access*, 10:13598–13610, 2022. doi: 10.1109/ACCESS.2022.3147670.

816 Aaron van den Oord, Oriol Vinyals, et al. Neural discrete representation learning. In *NeurIPS*, pp.
 817 6309–6318, 2017.

818 Théophane Weber, Sébastien Racanière, David P Reichert, Lars Buesing, Arthur Guez,
 819 Danilo Jimenez Rezende, Adria Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yujia
 820 Li, et al. Imagination-augmented agents for deep reinforcement learning. *arXiv preprint*
 821 *arXiv:1707.06203*, 2017.

822 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
 823 Zhou. Chain of thought prompting elicits reasoning in large language models. *arXiv preprint*
 824 *arXiv:2201.11903*, 2022.

825 Chuan Wen, Xingyu Lin, John So, Kai Chen, Qi Dou, Yang Gao, and Pieter Abbeel. Any-point
 826 trajectory modeling for policy learning. *arXiv preprint arXiv:2401.00025*, 2023.

827 Hongtao Wu, Ya Jing, Chilam Cheang, Guangzeng Chen, Jiafeng Xu, Xinghang Li, Minghuan Liu,
 828 Hang Li, and Tao Kong. Unleashing large-scale video generative pre-training for visual robot
 829 manipulation. *arXiv preprint arXiv:2312.13139*, 2023a.

830 Philipp Wu, Alejandro Escontrela, Danijar Hafner, Ken Goldberg, and Pieter Abbeel. Daydreamer:
 831 World models for physical robot learning. *arXiv preprint arXiv:2206.14176*, 2022.

832 Philipp Wu, Yide Shentu, Zhongke Yi, Xingyu Lin, and Pieter Abbeel. Gello: A general, low-cost,
 833 and intuitive teleoperation framework for robot manipulators, 2023b.

834 Tete Xiao, Ilija Radosavovic, Trevor Darrell, and Jitendra Malik. Masked visual pre-training for
 835 motor control. *arXiv preprint arXiv:2203.06173*, 2022.

836 Liang Xu, Ziyang Song, Dongliang Wang, Jing Su, Zhicheng Fang, Chenjing Ding, Weihao Gan,
 837 Yichao Yan, Xin Jin, Xiaokang Yang, et al. Actformer: A gan-based transformer towards general
 838 action-conditioned 3d human motion generation. In *Proceedings of the IEEE/CVF International
 Conference on Computer Vision*, pp. 2228–2238, 2023.

839 Chenyu Yang, Davide Liconi, and Robert K Katzschmann. Vq-ace: Efficient policy search for dex-
 840 terous robotic manipulation via action chunking embedding. *arXiv preprint arXiv:2411.03556*,
 841 2024a.

842 Jonathan Yang, Catherine Glossop, Arjun Bhorkar, Dhruv Shah, Quan Vuong, Chelsea Finn, Dorsa
 843 Sadigh, and Sergey Levine. Pushing the limits of cross-embodiment learning for manipulation
 844 and navigation, 2024b. URL <https://arxiv.org/abs/2402.19432>.

845 Seonghyeon Ye, Joel Jang, Byeongguk Jeon, Sejune Joo, Jianwei Yang, Baolin Peng, Ajay Man-
 846 dlekar, Reuben Tan, Yu-Wei Chao, Bill Yuchen Lin, et al. Latent action pretraining from videos.
 847 *arXiv preprint arXiv:2410.11758*, 2024a.

848 Seonghyeon Ye, Joel Jang, Byeongguk Jeon, Sejune Joo, Jianwei Yang, Baolin Peng, Ajay Man-
 849 dlekar, Reuben Tan, Yu-Wei Chao, Bill Yuchen Lin, et al. Latent action pretraining from videos.
 850 *arXiv preprint arXiv:2410.11758*, 2024b.

851 Jia Zeng, Qingwen Bu, Bangjun Wang, Wenke Xia, Li Chen, Hao Dong, Haoming Song, Dong
 852 Wang, Di Hu, Ping Luo, et al. Learning manipulation by predicting interaction. *arXiv preprint*
 853 *arXiv:2406.00439*, 2024.

854 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 855 effectiveness of deep features as a perceptual metric. In *CVPR*, 2018.

864 Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
865 manipulation with low-cost hardware. *arXiv preprint arXiv:2304.13705*, 2023.
866
867 Daquan Zhou, Weimin Wang, Hanshu Yan, Weiwei Lv, Yizhe Zhu, and Jiashi Feng. Magicvideo:
868 Efficient video generation with latent diffusion models. *arXiv preprint arXiv:2211.11018*, 2022.
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918
919

As part of the supplementary material, we include additional details about the following.

920
921
922

A Background: Covers key paradigms relevant for ViPRA: VQ-VAE for learning discrete latent actions, optical flow estimation, behavior cloning for direct action prediction and flow matching for smooth continuous control.

923
924
925

B Latent Action Learning: Architecture design, loss formulations, and training protocols for discrete action codebook learning, including hyperparameter configurations and optimization strategies.

926
927

C Multimodal Video-Action Integration: Implementation details for extending LWM with latent actions, including embedding architecture, decoder design, and joint training methodology.

928
929
930

D Continuous Control via Flow Matching: Complete specification of noise scheduling, action encoder/decoder architectures, and end-to-end training procedure.

931
932

E Simulation Benchmarks: Detailed description of SIMPLER tasks and additional LIBERO Long benchmark.

933
934
935

F Action Output Analysis: Comparative visualization and discussion of predicted action trajectories across discrete and continuous policies, highlighting the impact of quantization, loss formulations, and control space choices on smoothness and deployment behavior.

936
937
938

G Real World Experiments: Detailed description of hardware setup, task design, policy generalization, retrying behavior, and the impact of action chunking on control frequency and real-time performance in physical deployments.

939
940
941

H Bimanual Manipulation Tasks: Evaluation of ViPRA-FM on two real world dual-arm tasks requiring spatial coordination and tool use, including task setup, challenges, quantitative results, and rollout visualizations from real robot executions.

942
943
944

Code, checkpoints, and latent action labeled data and rollout videos will be released at: <https://vipra-robot.github.io>.

945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 **A BACKGROUND**
973

974 We review key paradigms relevant for ViPRA: VQ-VAE for imposing information bottleneck to
975 learn discrete latent actions, optical flow estimation, behavior cloning for direct action prediction
976 and flow matching for smooth continuous control.
977

978 **Vector-Quantised VAEs (VQ-VAE).** An encoder e_ζ maps an observation o_t to a cootinuou lat
979 estimation,ent vector $\tilde{h}_t = [\tilde{h}_t^1, \dots, \tilde{h}_t^N]$, which is quantized to a sequence of nearest codewords
980 $z_t = [z_t^1, \dots, z_t^N] \in \mathcal{C}$ using a shared discrete codebook. A decoder d_ζ reconstructs the observation
981 $\hat{o}_t = d_\psi(z_t + \text{Err})$, where Err is a gradient estimator used to allow backpropagation through the
982 non-differentiable quantization operation.
983

984 In traditional VQ-VAE (van den Oord et al., 2017), this estimator takes the form
985

986
$$\text{Err}_{\text{STE}} = \text{sg}(\tilde{h}_t - z_t), \quad (4)$$

987

988 where $\text{sg}(\cdot)$ denotes the stop-gradient operator. The decoder input $z_t + \text{Err}_{\text{STE}}$ preserves the forward
989 pass while enabling gradients to bypass the non-differentiable argmin. However, this approach
990 typically requires auxiliary losses, such as the codebook and commitment losses, to stabilize training
991 and encourage codebook usage. We adopt the NSVQ formulation (Vali & Bäckström, 2022), which
992 replaces the deterministic STE with a stochastic noise-injected surrogate
993

994
$$\text{Err}_{\text{NSVQ}} = \|z_t - \tilde{h}_t\| \cdot \tilde{\epsilon} \quad (5)$$

995

996 where $\tilde{\epsilon} = \epsilon / \|\epsilon\|$ and $\epsilon \sim \mathcal{N}(0, I)$. The decoder thus receives $\hat{o}_t = d_\psi(z_t + \text{Err}_{\text{NSVQ}})$. Crucially,
997 NSVQ enables gradients to flow to both the encoder and codebook using only the reconstruction
998 loss, without requiring additional codebook loss terms. The noise-injected gradient estimator, com-
999 bined with the *unused codebook replacement* technique applied during early training, significantly
1000 improves training stability and mitigates codebook collapse, a common issue in VQ-VAE training.
1001

1002 **RAFT based Optical Flow** Given two images, o_a and o_b , RAFT (Teed & Deng, 2020) obtains the
1003 dense displacement field $\mathbf{f}_{a \rightarrow b} \in \mathbb{R}^{H \times W \times 2}$ that maps each pixel in frame o_a to its location in o_b . It
1004 first extracts feature maps $\phi(o_a)$, $\phi(o_b) \in \mathbb{R}^{H' \times W' \times d}$ (where ϕ is the feature extractor) and builds
1005 the all-pair correlation \mathcal{R} , with $\mathcal{R}_{ij,kl} = \langle \phi_{ij}(o_a), \phi_{kl}(o_b) \rangle$. The flow prediction is then refined
1006 iteratively: $\mathbf{f}^{(k+1)} = \mathbf{f}^{(k)} + \Delta \mathbf{f}^{(k)}(\mathcal{R})$. When applied to temporally close frames in a video, this
1007 flow field f can give a good estimate of motion consistency.
1008

1009 **Behavior Cloning (BC)** is a supervised learning paradigm in robotics that learns policies directly
1010 from expert demonstrations. Given a dataset $\mathcal{D} = \{(o_t, a_t)\}_{t=1}^T$ of observation-action pairs from
1011 expert trajectories, BC trains a parameterized policy $\pi_{\text{BC}}(a_t|o_t; \theta)$ to minimize a distance metric
1012 between predicted and ground-truth actions:
1013

1014
$$\min_{\theta} \mathbb{E}_{(o_t, a_t) \sim \mathcal{D}} [d(\pi_{\text{BC}}(a_t|o_t; \theta), a_t)], \quad (6)$$

1015

1016 where $d(\cdot, \cdot)$ is typically the L1 or L2 distance for continuous actions or cross-entropy for discrete
1017 actions. This framework has been extended with high-capacity architectures: diffusion models (Chi
1018 et al., 2023; Zhao et al., 2023) parameterize $\pi_{\text{BC}}(a_t|o_t; \theta)$ as a denoising process that learns $p(a_t|o_t)$
1019 through iterative refinement, while VLAs leverage pretrained language models (Touvron et al., 2023;
1020 Qwen et al., 2024) and visual encoders (Radford et al., 2021; Oquab et al., 2023; Tschannen et al.,
1021 2025) as the backbone architecture for θ , enabling multimodal grounding of actions in visual and
1022 linguistic contexts.
1023

1024 **Flow Matching** (Lipman et al., 2022) provides an alternative to diffusion models for learning con-
1025 tinuous normalizing flows. While diffusion models learn the full denoising process, flow matching
1026 directly learns the vector field that transports samples from a source distribution to a target distri-
1027 bution. This approach offers computational advantages for robotics applications where real-time
1028 inference is critical.
1029

1030 Flow matching trains a neural network g_θ to predict the velocity field along a straight-line inter-
1031 polation path. Given a source sample x_0 (typically Gaussian noise) and target sample x_1 (e.g., robot
1032 actions), the interpolation creates a path:
1033

1034
$$u_s = s \cdot x_0 + (1 - s) \cdot x_1, \quad \text{where } s \in [0, 1] \text{ parameterizes the interpolation} \quad (7)$$

1035

1026 The model learns to predict the velocity field that guides samples along this path:
 1027

$$1028 \quad \frac{\partial}{\partial s} u_s = g_\theta(u_s, s | y), \quad \text{where } y \text{ represents conditioning inputs} \quad (8)$$

1029

1030 In robotics applications, y typically includes visual observations and language commands that spec-
 1031 ify the desired behavior.

1032 The training objective teaches the model to predict the correct velocity by minimizing the difference
 1033 between predicted and true flow direction:
 1034

$$1035 \quad \mathcal{L}_{\text{FM}} = \mathbb{E}_{(y, x_1) \sim \mathcal{D}, s \sim \mathcal{U}[0,1]} \left\| \underbrace{x_1 - x_0}_{\text{true direction}} - (1-s) \cdot \underbrace{g_\theta(u_s, s | y)}_{\text{predicted velocity}} \right\|_2^2. \quad (9)$$

1036

1037 At inference time, samples are generated by integrating the predicted velocity field from noise ($s = 0$) to the target ($s = 1$):
 1038

$$1039 \quad u_{s+\Delta s} = u_s + \Delta s \cdot g_\theta(u_s, s | y), \quad \text{where } \Delta s \text{ is the integration step size} \quad (10)$$

1040

1041 This produces the final sample $x_1 \approx u_1$. Forward Euler integration is commonly used due to its
 1042 efficiency (Black et al., 2024), though more sophisticated solvers like Heun’s method or Runge-
 1043 Kutta can improve stability for high-dimensional control tasks (Kutta, 1901; Runge, 1895). Flow
 1044 matching has demonstrated superior smoothness and precision compared to direct action prediction,
 1045 particularly for temporally extended manipulation tasks (Black et al., 2024; Bjorck et al., 2025).
 1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080 **B LATENT ACTION LEARNING**
1081

1082 We detail our latent action learning framework in Algorithm 1, which extracts discrete action tokens
1083 from video sequences using a combination of reconstruction, perceptual, and optical flow losses. A
1084 detailed diagram of this procedure is shown in Figure 7, and the complete training configuration–
1085 including model architecture and optimization hyperparameters—is provided in Table 3.

1086 The inverse dynamics encoder maps each frame o_t into a sequence of spatial features using a DI-
1087 NOv2 (Oquab et al., 2023)-initialized backbone. These features are enriched with clip-level context
1088 through factorized spatio-temporal attention layers, where the temporal branch employs bidirec-
1089 tional attention to aggregate information across the full sequence. The contextualized features are
1090 then discretized via Noise-Substitution Vector Quantization (NSVQ) (Vali & Bäckström, 2022), pro-
1091 ducing N_{latent} discrete codes selected from the shared codebook \mathcal{C} , which serve as the latent action
1092 tokens z_t .

1093 The forward decoder mirrors this architecture with a factorized spatio-temporal transformer, but
1094 applies causal temporal attention so that predictions depend only on the past. It jointly attends to
1095 the latent action sequence $z_{0:t}$ and the observation history $o_{0:t}$ to reconstruct the next frame o_{t+1} .
1096 In addition, we integrate the action-conditioning modules proposed by (He et al., 2025) before each
1097 spatio-temporal block in the decoder to better align action tokens with visual dynamics.

1099 **Algorithm 1** Latent Action Learning (Training Step)

1100 **Require:** Video clip of $L+1$ observations $o_{0:L} \in \mathbb{R}^{(L+1) \times H \times W \times 3}$
1101 **Require:** Hyperparameters: LPIPS weight λ_{LPIPS} , Flow weight λ_{flow} , Flow start step α_{flow}
1102 **Require:** Codebook $\mathcal{C} \in \mathbb{R}^{K \times D}$ with K codes of dimension D
1103 1: Extract visual features: $f_{0:L} \leftarrow \text{DINOv2}(o_{0:L})$
1104 2: Compute contextual embeddings: $h_{0:L} \leftarrow I_{\beta}(f_{0:L})$
1105 3: **for** $t = 0$ **to** $L - 1$ **do**
1106 4: Quantize embedding to latent: $z_t \leftarrow \text{NSVQ}(h_t, \mathcal{C})$
1107 5: Decode next frame: $\hat{o}_{t+1} \leftarrow F_{\alpha}(o_{0:t}, z_{0:t})$
1108 6: **end for**
1109 7:
1110 8: $\mathcal{L}_{\text{rec}} \leftarrow \sum_{t=0}^{L-1} \|\hat{o}_{t+1} - o_{t+1}\|_1$
1111 9: $\mathcal{L}_{\text{LPIPS}} \leftarrow \sum_{t=0}^{L-1} \text{LPIPS}(\hat{o}_{t+1}, o_{t+1})$
1112 10: **if** $\text{step} > \alpha_{\text{flow}}$ **then**
1113 11:
1114 12: $\mathcal{L}_{\text{flow}} \leftarrow \frac{1}{L} \sum_{t=1}^L \left(\|\text{OF}(\hat{o}_t, \hat{o}_{t-1}) - \text{OF}(o_t, o_{t-1})\|_1 + \|\text{OF}(\hat{o}_t, \hat{o}_{t+1}) - \text{OF}(o_t, o_{t+1})\|_1 \right)$
1115 13: **else**
1116 14: $\mathcal{L}_{\text{flow}} \leftarrow 0$
1117 15: **end if**
1118 16:
1119 17: $\mathcal{L}_{\text{latent}} \leftarrow \mathcal{L}_{\text{rec}} + \lambda_{\text{LPIPS}} \mathcal{L}_{\text{LPIPS}} + \lambda_{\text{flow}} \mathcal{L}_{\text{flow}}$
1120 18: Update parameters via AdamW optimizer

1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

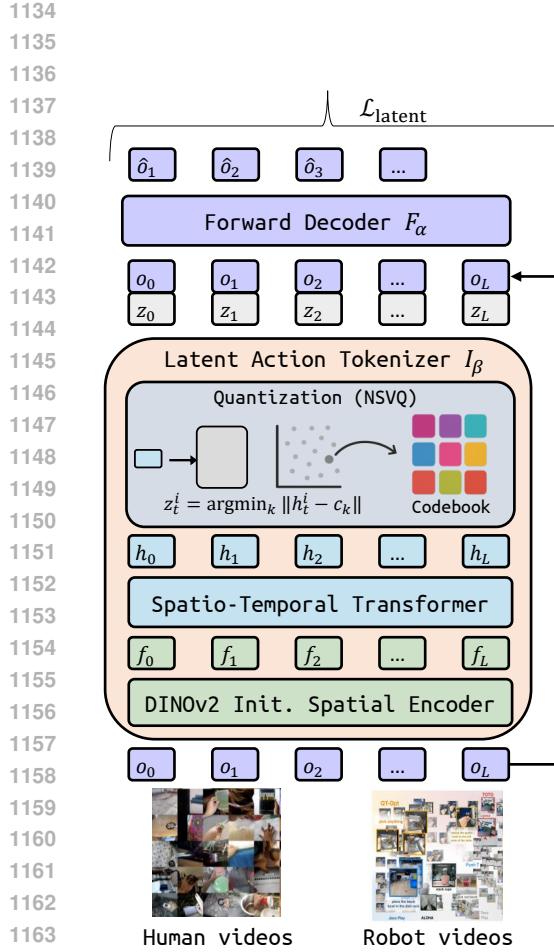


Figure 7: **Latent action learning framework.** Given a sequence of frames $o_{0:L}$, an inverse dynamics encoder $I_\beta(z_t \mid o_{0:L})$ maps the observation clip into discrete latent tokens z_t via vector quantization. A forward decoder $F_\alpha(\hat{o}_{t+1} \mid o_{0:t}, z_{0:t})$ then reconstructs the next frame \hat{o}_{t+1} conditioned on the observation history and latent action sequence. Training combines reconstruction, perceptual (LPIPS), and optical flow consistency losses to ensure that the latent tokens capture physically grounded and temporally localized action information.

Hyperparameter	Value
Training Configuration	
Optimizer	AdamW
Base Learning Rate	1e-4
DINO Enc. Learning Rate	1e-5
Optimizer Momentum	$\beta_1, \beta_2 = 0.9, 0.99$
Batch Size	128
Grad. Norm Clip	4.0
Total Steps	240000
Image Augmentation	RandomResizeCrop
Flow Start Step α_{flow}	60000
Losses	$\mathcal{L}_{\text{rec}} + \lambda_{\text{LPIPS}} \mathcal{L}_{\text{LPIPS}} + \lambda_{\text{flow}} \mathcal{L}_{\text{flow}}$
LPIPS Weight λ_{LPIPS}	0.5
Flow Weight λ_{flow}	0.1 (after α_{flow})
GPU	8 Nvidia H100 (168 hours)
Inverse Dynamics Encoder I	
Backbone Init.	DINOv2 (Oquab et al., 2023)
Embedding Dim	768
Spatio-temporal Layers	6
Attention Heads	16
Attention Head Dim	64
Latent Action Quantization	
Codebook Size $ \mathcal{C} $	8
Quantized Token Dim	32
Quantization Method	NSVQ (Vali & Bäckström, 2022)
Codebook Refresh Interval	Every 10 till 100, every 100 till 1000, every 1000 till 10000
Codebook Refresh Strategy	Re-init Unused, Re-shuffle Used
Forward Decoder F_α	
Embedding Dim	768
Spatio-temporal Layers	8
Attention Heads	16
Attention Head Dim	64

Table 3: Hyperparameters for latent action learning.

1188 C MULTIMODAL VIDEO PRETRAINING WITH LATENT ACTIONS
1189

1190 We augment a pretrained multimodal video model G_θ (LWM-Chat-1M (Liu et al., 2024)) with an
1191 embedding layer E_ϕ and a decoder H_ψ for latent action processing. The model jointly predicts
1192 future visual tokens and latent action sequences, conditioned on past frames and task context.
1193

1194 The latent action embedding head E_ϕ maps each code $z_t \in \mathcal{C}$ into the token space of G_θ , and
1195 the decoder head H_ψ predicts next-token logits over the latent vocabulary. Training uses teacher
1196 forcing for both video tokens (from a frozen VQ-VAE) and latent tokens with cross-entropy loss.
1197 The complete training procedure and hyperparameters are detailed in Algorithm 2 and Table 4.
1198

1199 **Algorithm 2** Multimodal Video Pretraining via Video and Latent Action Prediction
1200

1201 **Require:** History frames: (o_{t-1}, o_t)
1202 **Require:** Target frame: o_{t+H}
1203 **Require:** Task description: c (text string)
1204 **Require:** Labels *i.e.* latent action chunk $z_{t:t+H-1} \in \mathcal{C}^H$
1205 **Require:** Pretrained models: VQ-VAE encoder E_{VQ} , video model G_θ
1206 **Require:** Trainable components: random initialized embedding layer E_ϕ , decoder head H_ψ
1207 1: Tokenize input frames: $x_{t-1}, x_t \leftarrow E_{\text{VQ}}(o_{t-1}), E_{\text{VQ}}(o_t)$
1208 2: Tokenize target frame: $x_{t+H} \leftarrow E_{\text{VQ}}(o_{t+H})$
1209 3: Encode text prompt: $\tilde{c} \leftarrow \text{Tokenizer}(c)$
1210 4: Embed latent actions: $\tilde{z}_{t:t+H-1} \leftarrow E_\phi(z_{t:t+H-1})$
1211 5: **for** $i = 1$ **to** N_{tokens} **do**
1212 6: $\hat{x}_{t+H}^i \leftarrow G_\theta(\tilde{c}, x_{t-1}, x_t, \hat{x}_{t+H}^{<i})$ {Autoregressive prediction}
1213 7: **end for**
1214 8: $\mathcal{L}_{\text{img}} \leftarrow \sum_{i=1}^{N_{\text{tokens}}} \text{CE}(\hat{x}_{t+H}^i, x_{t+H}^i)$ {Image token loss}
1215 9: **for** $k = t$ **to** $t + H - 1$ **do**
1216 10: **for** $i = 1$ **to** N_{latent} **do**
1217 11: $\hat{z}_k^i \leftarrow H_\psi(G_\theta(\tilde{c}, x_{t-1}, x_t, x_{t+H}, z_{<k}, z_k^{<i}))$
1218 12: **end for**
1219 13: **end for**
1220 14: $\mathcal{L}_{\text{act}} \leftarrow \sum_{k=t}^{t+H-1} \sum_{i=1}^{N_{\text{latent}}} \text{CE}(\hat{z}_k^i, z_k^i)$ {Action token loss}
1221 15: $\mathcal{L}_{\text{pretrain}} \leftarrow \mathcal{L}_{\text{img}} + \mathcal{L}_{\text{act}}$ {Total loss}
1222 16: Update G_θ , E_ϕ , and H_ψ using gradient descent
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251

1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264

1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277

1278
 1279
 1280
 1281
 1282

1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

Hyperparameter	Value
Model Setup	
Video Model	LWM-Chat-1M (Liu et al., 2024) (initialized)
Tokenization Backbone	VQ-VAE (frozen)
Prompt Tokenizer	BPE tokenizer
Latent Action Vocabulary Size $ \mathcal{C} $	8
Latent Embedding Dim (E_ϕ)	4096
Latent Decoder Type (H_ψ)	MLP
Latent Decoder Layers	1
Latent Decoder Hidden Dim	2048
Training Configuration	
Optimizer	AdamW
Learning Rate	4e-5
Weight Decay	0.0
Optimizer Betas	(0.9, 0.95)
Batch Size	512
Total Steps	50,000
Dropout	0.1
Gradient Clipping	1.0
Mixed Precision	<code>bfloat16</code>
GPU	8 Nvidia H100 (144 hours)
Prediction Targets	
Prediction Horizon H	14
Image Token Loss	Cross Entropy
Latent Action Loss	Cross Entropy

Table 4: Hyperparameters for multimodal video pretraining to jointly predict future visual state and latent action sequence. The video model is initialized from LWM-Chat-1M and trained jointly with lightweight latent action modules.

1296 **D FLOW MATCHING DECODER FOR CONTINUOUS CONTROL**
12971298 We extend the pretrained video model G_θ with two components for continuous control. Specifically,
1299 we introduce an action encoder head E_γ that maps each continuous noisy action x_s into the model's
1300 embedding space, and an action decoder head H_η that predicts the flow field used to recover the full
1301 action chunk.1302 The resulting model, denoted g_ω , consists of three key components: the pretrained video model G_θ ,
1303 the action encoder E_γ , and the flow decoder H_η . During training, we sample a noisy interpolation
1304 between a standard Gaussian vector and the ground-truth action chunk, and supervise the predicted
1305 flow toward the true actions using visual and task context. The full training procedure is detailed in
1306 Algorithm 3. Corresponding neural design choices and hyperparameters are include in Table 5.
13071308 **Algorithm 3** Flow Matching for Continuous Control1309 **Require:** Image history frames (o_{t-1}, o_t) ,
1310 **Require:** Task description: c (text string)
1311 **Require:** Action chunk $a_{t:t+H-1} \in \mathbb{R}^{H \times D}$ {D-dimensional actions}
1312 **Require:** Pretrained models: VQ-VAE encoder E_{VQ} , video model G_θ
1313 **Require:** Trainable components: action encoder E_γ , flow decoder H_η
1314 1: Sample timestep $s \sim \text{Beta}(1.5, 1.0)$
1315 2: Sample noise $x_0 \sim \mathcal{N}(0, I)$
1316 3: Compute interpolation: $x_s \leftarrow s \cdot x_0 + (1-s) \cdot a_{t:t+H-1}$
1317 4: Tokenize input frames: $x_{t-1}, x_t \leftarrow E_{\text{VQ}}(o_{t-1}), E_{\text{VQ}}(o_t)$
1318 5: Encode text prompt: $\tilde{c} \leftarrow \text{Tokenizer}(c)$
1319 6: Encode noisy actions: $f_s \leftarrow E_\gamma(x_s, s)$
1320 7: Predict flow field: $\hat{g} \leftarrow H_\eta(G_\theta(\tilde{c}, x_{t-1}, x_t, f_s))$
1321 8: $\mathcal{L}_{\text{FM}} \leftarrow \|a_{t:t+H-1} - x_0 - (1-s) \cdot \hat{g}\|_2^2$ {Flow matching loss}
1322 9: Update parameters of E_γ , G_η , and G_θ via gradient descent

Hyperparameter	Value
Noisy Action Encoder Head (E_γ)	
Architecture	2-layer MLP
Hidden Dim	4096
Embedding Dim (d_a)	4096
Activation	GELU
Dropout	0.1
Flow Decoder Head (G_η)	
Input Dim	7 (End-Effector Deltas) or 8 (Absolute Joint States)
Architecture	Single linear projection
Flow Matching Setup	
Interpolation Timestep s	Beta(1.5, 1.0)
Noise Distribution x_0	Standard normal $\mathcal{N}(0, I)$
Prediction Horizon H	14
Integration Method (Inference)	Forward Euler, $N = 10$ steps
Training Configuration (follows Table 4)	
Total Steps	12000 (SIMPLER)

1348 Table 5: Architecture and hyperparameters used for continuous control. Training settings (optimizer,
1349 schedule, etc.) match those used during pretraining.

1350 **E SIMULATION BENCHMARKS**
13511352 **E.1 SIMPLER BENCHMARK**
13531354 Following prior latent action works (Ye et al., 2024b; Bu et al., 2025), we benchmark ViPRA in
1355 SIMPLER (Li et al., 2024c), an open-source suite for evaluating generalist manipulation policies.
1356 We evaluate on four Bridge tasks with a 7-DoF WidowX arm, a benchmark designed to test gener-
1357 alization across diverse manipulation goals. Since SIMPLER does not provide finetuning data, we
1358 collect 100 diverse multi-task trajectories using a pretrained VLA model (Ye et al., 2024b) to adapt
1359 policies before evaluation. The tasks are as follows:
13601361 • **Spoon2Cloth**: The instruction is put the spoon on the towel. The spoon is placed on a
1362 vertex of a 15 cm square on the tabletop, and the towel on another vertex. The spoon’s orientation
1363 alternates between horizontal and vertical, requiring the robot to re-orient its gripper. This task
1364 evaluates both grasp selection and orientation adjustment.
1365 • **Carrot2Plate**: The instruction is put carrot on plate. Same setup as Spoon2Cloth, but with
1366 a carrot and a plate. While similar in layout, this introduces a different geometry and surface,
1367 requiring adaptation in grasping and placement.
1368 • **StackG2Y**: The instruction is stack the green block on the yellow block. A green
1369 block is placed on a vertex of a tabletop square (10 cm and 20cm edges) and a yellow block
1370 on another. Success requires precise alignment and careful release, making it a fine-grained ma-
1371 nipulation task that stresses stability and accuracy.
1372 • **Eggplant2Bask**: The instruction is put eggplant into yellow basket. An eggplant is
1373 dropped into the right basin of a sink and a yellow basket in the left basin. The eggplant is
1374 randomized in pose but ensured to be graspable. This task evaluates robustness to shape variabil-
1375 ity and placement under uncertainty, as the object must be reliably picked and transferred across
1376 workspace regions.
13771378 We evaluate performance using two metrics: **success rate** and **partial success rate (grasp rate)**.
1379 Success rate measures whether the full task goal is completed (e.g., spoon placed on towel, block
1380 stacked without falling, eggplant deposited into basket). Grasp rate captures whether the robot
1381 is at least able to establish a successful grasp on the object, even if the subsequent placement or
1382 stacking is not achieved. This distinction is important: grasping reflects a fundamental capability
1383 for initiating manipulation, while successful completion requires the integration of grasping with
1384 precise transport and placement. Together, these metrics provide a more comprehensive view of
1385 policy competence, distinguishing between failures due to perception/grasping versus those arising
1386 from downstream control and placement.
13871388 **E.2 SIMPLER RESULTS**
13891390 We report both end-to-end *success rate* and *grasp rate* in Table 1. Across **discrete actions** set-
1391 ting, **ViPRA-AR** attains the best average success (69.8%), exceeding LAPA (53.1%), VPT (51.0%)
1392 and OpenVLA (38.6%). It leads on precision-heavy StackG2Y (66.7% vs. 54.2% Scratch-AR,
1393 45.8% VPT) and Carrot2Plate (62.5%), and remains competitive on Spoon2Cloth (66.7%, near
1394 VPT’s 70.8%). On Eggplant2Bask, ViPRA-AR (83.3%) significantly outperforms other methods,
1395 demonstrating strong transport and placement.
13961397 In the **continuous setting**, **ViPRA-FM** achieves the highest average success (62.5%), outper-
1398 forming Scratch-FM (41.7%), π_0 (27.1%), and UniVLA (42.7%). It is the strongest continuous model on
1399 StackG2Y (54.2%), Carrot2Plate (50.0%) and Spoon2Cloth (66.7%) while remaining competi-
1400 tive (79.2%) with π_0 (83.3%) on Eggplant2Bask. UniPI frequently generates action sequences that
1401 diverge from the given instruction in longer-horizon settings, while VPT provides only limited gains,
1402 indicating that IDM-derived pseudo-labels are sensitive to environment shifts. In contrast, ViPRA’s
1403 joint use of latent action prediction and future state modeling yields stronger cross-environment
1404 transfer and more reliable task execution.
14051406 ViPRA converts grasps into task completion more reliably. On StackG2Y, OpenVLA achieves
1407 70.8% grasp but only 25.0% success (a 45.8 pt gap), indicating post-grasp placement failures.
1408 ViPRA-AR maintains 66.7% grasp and 66.7% success (0 pt gap), and ViPRA-FM 62.5% grasp
1409

Method	Success Rate
UniPI (Du et al., 2023b)	0.00
OpenVLA Kim et al. (2024)	0.54
π_0 -FAST (Black et al., 2024)	0.60
π_0 (Black et al., 2024)	0.85
UniVLA (human) (Bu et al., 2025)	0.79
UniVLA (all) (Bu et al., 2025)	0.92
ViPRA	0.79

Table 6: Success rates on LIBERO-10 benchmark.

vs. 54.2% success (8.3 pt gap), evidencing stable transport and release. On Eggplant2Bask, OpenVLA’s 91.7% grasp falls to 58.3% success (33.4 pt drop), whereas ViPRA-AR (100% \rightarrow 83.3%) and ViPRA-FM (91.7% \rightarrow 79.2%) show markedly smaller drops, consistent with smoother post-grasp control and accurate instruction following.

E.3 LIBERO LONG BENCHMARK

We also evaluate on LIBERO Long (a.k.a LIBERO 10) (Liu et al., 2023), the most challenging subset of the LIBERO simulation benchmark. Unlike the Spatial, Object, or Goal subsets, LIBERO Long focuses on long-horizon manipulation tasks that require sequencing multiple sub-goals with heterogeneous objects, layouts, and task dependencies. This setting stresses robustness and temporal compositionality, since errors can accumulate across long horizons.

The evaluation consists of a suite of 10 long-horizon tasks, each paired with a natural language goal description. For example, one of the task instructions includes "put the white mug on the plate and put the chocolate pudding to the right of the plate", requiring reasoning over both symbolic relations (object identities, spatial references) and low-level control. For each task, the environment is initialized with objects placed in varied locations, increasing the difficulty of generalization.

Each task is evaluated across 10 runs with 5 different random seeds, and results are reported as the average reward over all 10 tasks (500 episodes in total). This protocol provides a stringent test of both semantic grounding and long-horizon policy execution, making LIBERO Long a valuable complement to SIMPLER’s shorter-horizon manipulation tasks.

E.4 LIBERO LONG RESULTS

On LIBERO-10, which emphasizes long-horizon, multi-stage manipulation, ViPRA achieves a 79% success rate. This is substantially higher than OpenVLA (54%) and π_0 -FAST (60%), and close to UniVLA (90%), which is specifically optimized for LIBERO. These results demonstrate that ViPRA’s motion-centric latent pretraining transfers effectively to simulated long-horizon tasks, outperforming methods trained primarily with labeled actions or direct policy supervision.

We observe that ViPRA performs reliably on coarse manipulations (e.g., cups, bowls, books), which are easy to grasp, but struggles with precision grasps such as cylindrical cans that require diameter-aligned control. We attribute this to *delta-EEF drift*: since LIBERO’s action space is delta end-effector, small prediction biases can accumulate over time, leading to imprecise grasps in the absence of absolute cues to re-anchor the trajectory. For instance, π_0 mitigates this issue by conditioning on proprioceptive state history and wrist-camera inputs. Despite lacking such additional signals, ViPRA surpasses OpenVLA under the same sensing setup (image-only, delta-EEF), underscoring the benefits of motion-centric latent pretraining for long-horizon manipulation.

1458 F ACTION OUTPUT ANALYSIS

1460 We provide a more in-depth analysis of the action outputs of various policies introduced in Sec-
 1461 tion 5.5, highlighting their differences in smoothness, consistency, and suitability for real world
 1462 deployment. Policies differ in their action representations and control spaces:

- 1464 • **Absolute Joint Space.** ViPRA-FM and LAPA (Ye et al., 2024a) output full 7D joint posi-
 1465 tions (Franka), directly supervised in joint space.
- 1466 • **Delta End-Effector Space.** OpenVLA (Kim et al., 2024), π_0 (Black et al., 2024), and
 1467 operate in 7D Cartesian delta commands (position, Euler rotations, gripper), decoded from
 1468 visual inputs.
- 1469 • **Continuous vs Discrete.** ViPRA-FM and π_0 (Black et al., 2024) predict continuous actions
 1470 via a flow matching decoder, whereas LAPA (Ye et al., 2024a) and OpenVLA (Kim et al.,
 1471 2024) use quantized logits over discretized action bins.

1472 To better understand the behavioral differences between discrete and continuous policies, we analyze
 1473 the predicted action trajectories across different models during closed-loop visual rollout on real
 1474 robot observations. We evaluate policies by loading their finetuned checkpoints into our inference
 1475 pipeline and simulating replay on the training trajectories from the finetuning dataset. This allows
 1476 us to visualize their motor command trends without introducing new generalization factors. In
 1477 particular, we compare ViPRA-FM (ours), LAPA (Ye et al., 2024a), OpenVLA (Kim et al., 2024),
 1478 and π_0 (Black et al., 2024).

1479 LAPA (Ye et al., 2024b) and OpenVLA (Kim et al., 2024) rely on a discretization scheme in which
 1480 each dimension of the robot’s action space is uniformly quantized into 255 bins using equal-sized
 1481 quantiles over the training distribution. That is, for each joint or end-effector dimension, bin bound-
 1482aries are chosen so that each bin contains roughly the same number of training points. This quantile-
 1483 based discretization ensures equal data coverage across bins but introduces two key limitations in
 1484 how actions are represented and learned:

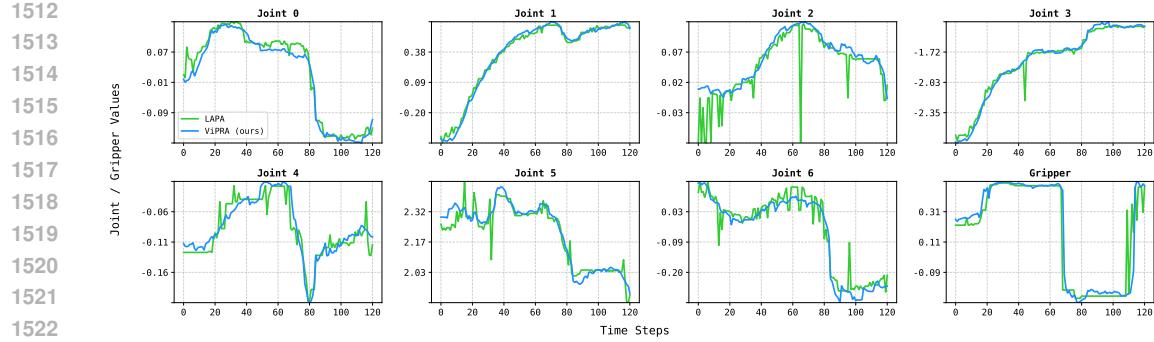
- 1485 1. **Contact-Sensitive Flipping:** At test time, small perturbations in the input (e.g., due to
 1486 occlusions or slight viewpoint drift) may cause the model to flip from one bin to another
 1487 near the quantile boundary—especially at contact points. Since adjacent bins can correspond
 1488 to different action magnitudes, these minor visual shifts can lead to abrupt discontinuities
 1489 in motor output.
- 1490 2. **Loss Granularity:** The cross-entropy loss used for training treats each action bin as a
 1491 distinct class label. As a result, all incorrect predictions are penalized equally, regardless of
 1492 how close they are to the ground-truth bin. For example, predicting bin 127 instead of 128
 1493 incurs the same loss as predicting bin 0. This is fundamentally at odds with the structure of
 1494 continuous action spaces, where the cost of an error should scale with its magnitude.

1495 We hypothesize that the combination of bin boundary flipping and non-metric loss leads to the
 1496 spiky or erratic behavior seen in discrete action models, particularly around moments of contact
 1497 or high-frequency motion. These effects are amplified in high-dimensional control settings, where
 1498 discretization artifacts can arise independently in each action dimension—compounding into visibly
 1499 unstable or jerky behaviors across the full joint trajectory.

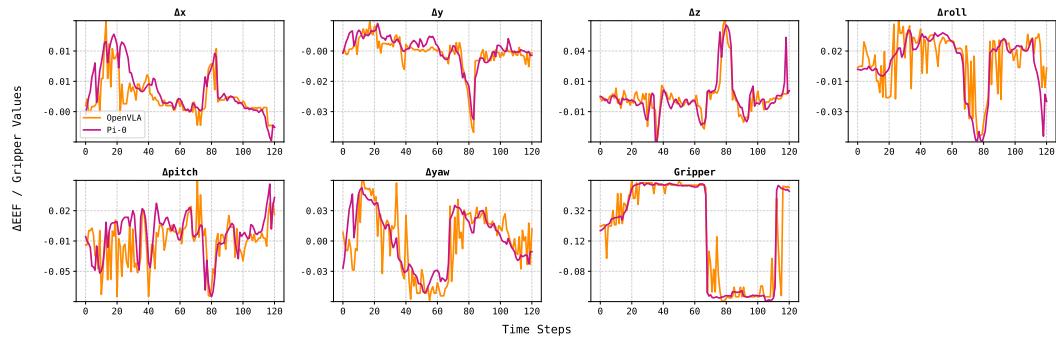
1500 By contrast, continuous policies such as ViPRA-FM and π_0 (Black et al., 2024) operate directly in
 1501 \mathbb{R}^D using flow matching. These losses naturally reflect the structure of the action space—penalizing
 1502 predictions in proportion to how far they deviate from the ground truth. As a result, the output
 1503 trajectories tend to be smoother, better aligned with demonstrations, and more robust to perceptual
 1504 jitter.

1505 We note that it may be possible to mitigate some of the above issues by increasing the number of
 1506 bins or by using non-uniform binning schemes (e.g., higher resolution in frequently visited regions).
 1507 However, these approaches increase model complexity and still inherit the fundamental limitation
 1508 of using classification loss in a regression setting. Continuous decoders trained with distance-aware
 1509 objectives offer a more natural and principled solution for low-level control.

1511 To gain deeper insight into how different action representations influence control behavior, we ex-
 1512 amine the temporal structure of predicted actions across several rollout trajectories. We organize



(a) **Absolute joint space.** Predicted 7D joint positions over time for ViPRA-FM (blue) and LAPA (Ye et al., 2024b) (green). ViPRA-FM produces smooth, continuous trajectories, while LAPA (Ye et al., 2024b) exhibits local discontinuities and random spikes—often around contact events—despite tracking the overall trend. In real world deployment, such discontinuities triggered Franka’s emergency brake mechanism due to abrupt torque jumps.



(b) **Delta end-effector space.** Predicted 7D delta actions (position, rotation, gripper) for π_0 (Black et al., 2024) (magenta) and OpenVLA (Kim et al., 2024) (orange). Although delta control provides structured low-level modulation, OpenVLA exhibits sharp fluctuations due to discretized output. Notably, the gripper signal shows large, momentary switches during contact events—resulting in failed grasps or premature object drops. In contrast, π_0 maintains stable gripper behavior during fine manipulation.

1544 Figure 8: Visualization of predicted actions across different control spaces. Discrete policies often produce sharp discontinuities due to binning artifacts and classification loss, whereas continuous policies exhibit 1545 smoother, dynamics-consistent behavior.

1546 the analysis by control space—absolute joint angles vs. delta end-effector motions—and visualize 1547 per-dimension action trends across time in Figure 8.

1548 These visualizations support our hypothesis: *discrete policies, trained with cross-entropy over fixed* 1549 *bins, tend to produce abrupt transitions around perceptually sensitive regions—especially near bin* 1550 *boundaries or occlusions. This manifests as random spikes, high-frequency jitter, or contact-time* 1551 *instability, all of which can destabilize robot behavior in deployment.*

1552 In contrast, *continuous policies like ViPRA-FM and π_0 , trained with flow matching losses, yield* 1553 *consistently smooth, physically plausible actions that better reflect real world constraints.* The 1554 ability to interpolate naturally between states—not just classify them—proves critical for robust closed- 1555 loop performance in contact-rich manipulation.

1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

1566 **G REAL WORLD EXPERIMENTS: SETUP, CHALLENGES, AND**
 1567 **OBSERVATIONS**
 1568

1569 To complement our real world results in Section 5.4, we provide additional details on our hardware
 1570 setup, task design, and policy behavior under realistic sensing and control constraints. We also ana-
 1571 lyze generalization to unseen objects, retry behavior, and how chunked continuous actions support
 1572 efficient closed-loop control.
 1573

1574 **G.1 HARDWARE AND DATA COLLECTION SETUP**
 1575

1576 All experiments are conducted on a real world robotic platform with two 7-DOF Franka Emika
 1577 Panda arms. The workspace is observed by a single front-mounted ZED stereo camera. There
 1578 are no wrist-mounted or side-view cameras, so all perception is monocular and from a fixed third-
 1579 person viewpoint. We use the GELLO teleoperation system (Wu et al., 2023b) to collect human
 1580 demonstrations at 15Hz. Demonstrations are collected directly in task-relevant environments, with
 1581 each policy trained using only a single camera view.
 1582

1583 Our decision to use image history as part of the observation is motivated by the inherently temporal
 1584 nature of the video model architecture, as well as the absence of auxiliary views. Stacking obser-
 1585 vations over time allows the model to internally infer dynamics and compensate for occlusions or
 1586 ambiguous single-frame cues.
 1587

1588 **G.2 TASK DESCRIPTIONS AND CHALLENGES**
 1589

1590 We evaluate policies on three real world single-arm tasks, each with unique control and perception
 1591 challenges (Figure 9):
 1592

- 1593 1. **Cover-Object:** The robot must pick up a piece of cloth and drape it over a specified ob-
 1594 ject. This task is challenging due to the deformable nature of cloth, which requires reliable
 1595 grasping from the table surface. Slight changes in cloth configuration or object geom-
 1596 etry can affect dynamics drastically. Generalization requires reasoning over unseen cloth
 1597 textures and novel target objects.
 1598
- 1599 2. **Pick-Place:** The robot must pick up a named object (e.g., sponge, bowl, duck) and place
 1600 it on a destination surface (plate or board). Object shapes vary significantly, leading to
 1601 different grasp affordances. Grasping a wide bowl vs. a narrow-handled cup requires
 1602 distinct motor strategies. The task is highly multimodal—there are multiple correct ways to
 1603 perform the task, depending on object shape, pose, and placement surface.
 1604
- 1605 3. **Stack-Cups:** The robot must follow language instructions to stack a cup of color1 onto a
 1606 cup of color2. Success requires grounding object properties and executing precise stacking.
 1607 Evaluation setups include unseen cup types, color shades, and geometries to test language
 1608 understanding and spatial generalization.
 1609

1610 **G.3 GENERALIZATION TO NOVEL OBJECTS**
 1611

1612 A core goal of our real world evaluation is to assess how well the policy generalizes to unseen
 1613 object instances and configurations not encountered during training. We design test-time setups that
 1614 introduce meaningful variation across tasks:
 1615

- 1616 • **Cover-Object:** Test scenarios include cloths of varying texture, size, and stiffness, as well
 1617 as new target objects such as jars, boxes, and toys. These variations require the policy to
 1618 generalize grasp strategies and adapt to deformable material dynamics.
 1619
- 1620 • **Pick-Place:** We evaluate on previously unseen objects with diverse geometries and affor-
 1621 dances (e.g., bowls, mugs, fruits), and destination surfaces of varying size and texture. The
 1622 task requires flexible grasping and reliable placement across a range of object shapes and
 1623 destination surfaces.
 1624
- 1625 • **Stack-Cups:** Evaluation includes new cup types with unseen shapes, rim sizes, and fine-
 1626 grained color variations. The policy must generalize language grounding to new color
 1627 references and execute precise stacking across novel physical configurations.
 1628

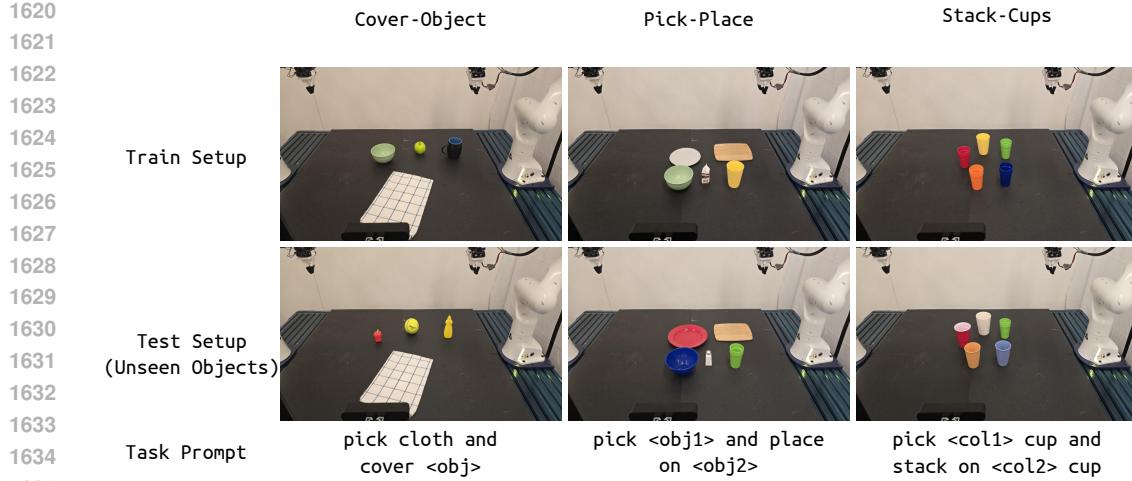


Figure 9: **Task Setup Overview.** (Top row) Training environments for each of the three single-arm manipulation tasks: Cover-Object, Pick-Place, and Stack-Cups. (Bottom row) Evaluation environments featuring novel objects, textures, or placements not seen during training. Note the variety in cloth shape, object geometry, plate type, and cup color/size combinations.

Despite these shifts, *our method consistently exhibits robust generalization across all tasks*. We attribute this to the combination of latent dynamics pretraining, language-conditioned perception, and a unified architecture that integrates semantic, spatial, and temporal cues. Pretraining on diverse unlabeled videos teaches the model general priors about object motion and interaction. Conditioning on task instructions guides object selection and interpretation even in ambiguous or unfamiliar contexts. Finally, the architectural design ensures that learned representations capture not just appearance, but how objects behave across time, enabling transfer to new instances that were not explicitly seen during supervised finetuning.

G.4 RETRYING BEHAVIOR ENABLED BY TEMPORAL PRETRAINING

Our method consistently exhibits robust *retry behavior*: when an initial grasp attempt fails, due to occlusion, misalignment, or object shift, the policy often reattempts until successful. This is especially evident in Cover-Object, where the robot frequently retries grasping if the cloth slips, and in Pick-Place, where wide or irregularly shaped objects like bowls may require multiple grasp attempts from different angles.

We attribute this robustness to our temporal pretraining objective. By learning to predict future video frames and latent actions over multiple steps, the model develops a sense of longer-horizon dynamics and recoverability. Rather than depending on single-step feedback, it implicitly plans through extended temporal context—enabling it to course, correct and persist through partial failures.

G.5 ACTION CHUNKING AND INFERENCE EFFICIENCY

ViPRA produces continuous actions using a chunked flow matching decoder, generating sequences of 14 actions per inference step. At test time, we cap control frequency by evaluating two rollout strategies: **7/14 rollout**, where the first 7 actions of each chunk are executed before re-planning, and **14/14 rollout**, where all 14 actions are executed before the next inference. The former corresponds to an effective closed-loop update rate of ~ 3.5 Hz, while the latter doubles this to 7 Hz. Because predicted action trajectories are smooth and temporally coherent, ViPRA remains stable even under open-loop execution within each chunk. This property is particularly beneficial for contact-rich phases that demand reactive yet jitter-free behavior.

KV caching for fast inference We further optimize inference with key-value (KV) caching. Language and image attention states are cached once and reused across flow matching Euler steps, so only action tokens are recomputed during integration. This reduces redundant computation, enabling the entire 14-step chunk to be produced in 510 ms (~ 1.95 Hz), which corresponds to a robot-side

control frequency of up to 22 Hz. Our setup can stably support control rates approaching 20 Hz, to our knowledge matched only by one other 7B-parameter model (Kim et al., 2025).

Comparison with baselines. Table 7 summarizes model sizes, action rollout lengths, and inference times. Unlike prior approaches that also use a 7B model (e.g., LAPA and OpenVLA) and operate at \sim 200 ms per step but predict only single actions, ViPRA amortizes inference across long, smooth action chunks, enabling high frequency reactive control.

Method	Model Size	Action Steps	Inference Time (ms)
LAPA (Ye et al., 2024b)	7B	1	220
OpenVLA (Kim et al., 2024)	7B	1	190
π_0 (Black et al., 2024)	3.3B	16	90
UniPI (Du et al., 2024)	—	16	24000
UVA (Li et al., 2025)	0.5B	16	230
ViPRA (ViPRA-FM)	7B	14	510

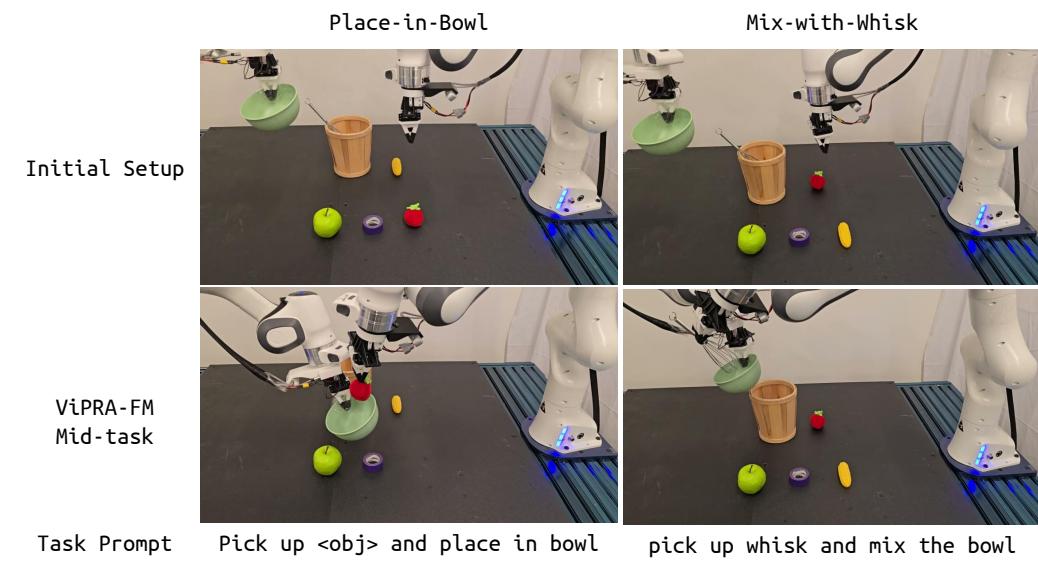
Table 7: Inference speed comparison across models. ViPRA achieves high effective control frequencies by amortizing computation over action chunks.

1728 H ViPRA-FM ON CHALLENGING BIMANUAL TASKS

1729
 1730 Bimanual manipulation introduces significant complexity beyond single-arm control. The combined
 1731 action space spans 14 degrees of freedom, and inter-arm coordination requires precise spatial align-
 1732 ment, collision avoidance, and timing consistency. The solution space is also highly multimodal—
 1733 there are many valid ways to execute a task depending on object geometry, initial configurations,
 1734 and movement variability. These challenges make bimanual tasks a strong test of a policy’s ability
 1735 to generalize and coordinate under real world constraints.

1737 H.1 BIMANUAL SETUP

1738 We test our framework using both arms of the Franka Panda robot. While only the right arm per-
 1739 forms active grasping, both arms are controlled jointly using a single policy conditioned on shared
 1740 language instructions. The system receives monocular observations from a front-mounted ZED
 1741 camera and generates chunked continuous actions for both arms in a synchronized control loop.



1743
 1744 Figure 10: **Bimodal task execution by ViPRA-FM.** (Top row) Initial setup for the two tasks: placing a
 1745 tomato into a bowl and mixing with a whisk. (Bottom row) Mid-execution rollout of ViPRA-FM: the right arm
 1746 transports the tomato toward the bowl held by the left arm (left), and mixes the contents using the whisk while
 1747 the left arm maintains bowl stability (right). These examples highlight coordinated two-arm control and fluent
 1748 execution of tool- and object-handling behaviors.

1749 We evaluate two bimodal tasks of increasing complexity:

1750 **(1) Place-in-Bowl:** The right arm must grasp a target object (e.g., a fruit or kitchen item) and place
 1751 it into a bowl held by the left arm. Success requires fine-grained spatial alignment above the bowl,
 1752 smooth object transfer, and collision-free approach and retreat trajectories in close proximity to the
 1753 support arm.

1754 **(2) Mix-with-Whisk:** The right arm retrieves a whisk from a nearby basket, mixes the contents
 1755 of the bowl, and returns the whisk to its original location. This task involves tool use, curved and
 1756 sustained motion, and close-proximity coordination with the left arm, which dynamically maintains
 1757 the bowl pose throughout the sequence.

1758 These tasks pose significant challenges for real world bimodal coordination. Both arms must op-
 1759 erate in close proximity, requiring precise spatial alignment to avoid collisions—especially during
 1760 approach and retreat phases. With only a single fixed camera and no wrist-mounted sensors, the
 1761 policy must infer depth and object interactions purely from visual input. Timing mismatches or cal-
 1762 ibration drift between the arms can further compound errors, making successful execution sensitive
 1763 to both perception and control stability.

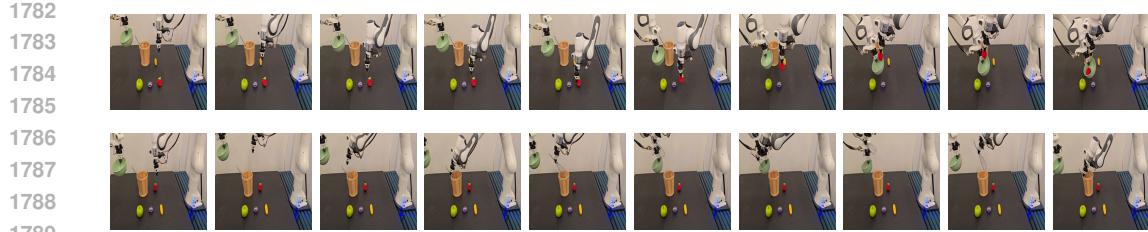


Figure 11: **ViPRA-FM rollouts in real world bimanual tasks.** Top: Place-in-Bowl - the robot picks up a tomato and places it into a bowl held by the left arm. Bottom: Mix-with-Whisk - the robot retrieves a whisk, stirs the bowl contents, and returns the tool. Each sequence shows 10 evenly spaced frames sampled from real world executions.

H.2 BIMANUAL RESULTS

ViPRA-FM is deployed using 14-step action chunks, executed at 7Hz control frequency. This high-frequency chunked control allows the policy to maintain smooth, temporally coherent trajectories while remaining responsive to changing visual inputs. The model also receives short history windows as input, which helps stabilize motion during contact-heavy transitions and multi-step interactions.

In Place-in-Bowl, the robot completes 10 out of 18 trials. Failures were primarily due to unsuccessful grasps caused by the limited span and compliance of our custom 3D-printed gripper, not the bimanual coordination itself. In all successful grasps, the object was consistently placed into the bowl without collision or instability. This suggests that the policy reliably handles the spatial reasoning and coordination demands of the task, with grasp robustness being the primary bottleneck, a limitation that could be mitigated with a more capable gripper design.

In Mix-with-Whisk, the robot completes 8 out of 12 trials. The task involves sustained, curved motion in close proximity to the left arm, requiring continuous spatial alignment between the whisk and bowl. The policy leverages temporal history to stay anchored to the mixing target and uses its chunked control output to produce smooth stirring behavior. The whisk's small, symmetric handle makes it easier to grasp, allowing the policy to focus on trajectory accuracy and contact stability throughout the sequence.

Together, these results demonstrate that ViPRA-FM is capable of executing complex bimanual tasks using a single vision-conditioned policy and continuous action generation. Additional results, comparisons, and rollout videos will be shared on our project website. <https://vipra-robot.github.io>.

1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835