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ABSTRACT

Can we turn a video prediction model into a robot policy? Videos, including
those of humans or teleoperated robots, capture rich physical interactions. How-
ever, most of them lack labeled actions, which limits their use in robot learning.
We present Video Prediction for Robot Actions (ViPRA), a simple pretraining-
finetuning framework that learns continuous robot control from these actionless
videos. Instead of directly predicting actions, we train a video-language model to
predict both future visual observations and motion-centric latent actions, which
serve as intermediate representations of scene dynamics. We train these latent ac-
tions using perceptual losses and optical flow consistency to ensure they reflect
physically grounded behavior. For downstream control, we introduce a chunked
flow matching decoder that maps latent actions to robot-specific continuous ac-
tion sequences, using only 100 to 200 teleoperated demonstrations. This approach
avoids expensive action annotation, supports generalization across embodiments,
and enables smooth, high-frequency continuous control upto 22 Hz via chunked
action decoding. Unlike prior latent action works that treat pretraining as autore-
gressive policy learning, ViPRA explicitly models both what changes and how.
Our method outperforms strong baselines, with a 16% gain on the SIMPLER
benchmark and a 13% improvement across real world manipulation tasks. We
will release models and code athttps://vipra-robot.github.io.

1 INTRODUCTION

Robots learn by doing, but collecting robot demonstrations, particularly at scale, is expensive,
time-consuming, and limited by embodiment. In contrast, videos are abundant. From YouTube
clips (Abu-El-Haija et al., 2016) of people performing tasks (Grauman et al.| [2022b; |2024; |Goyal
et al.| [2017; [Damen et al., [2018])) to logs of teleoperated robots (O’Neill et al.l [2023)), they capture
rich physical interactions, diverse objects, and long-horizon behaviors that are difficult to script or
reproduce. The challenge is that most of these videos may not include action labels.

At the same time, recent advances in video prediction models (Liu et al., 2024} Blattmann et al.,
2023} [Singer et al., 2022 Zhou et al.| | 2022; NVIDIA et al.l[2025) open up a new opportunity: learn-
ing directly from large corpora of actionless videos. Beyond preserving high-level task semantics,
these generative models exhibit a strong grasp of object dynamics and fine-grained physical inter-
actions. This naturally leads to a central question: Can a video prediction model be transformed
into a control policy for physical robots? In this work, we explore this question through a simple
and scalable pretraining-finetuning framework that adapts a powerful video-language model (Liu
et al.| 2024) into a robot policy capable of learning from passive videos.

During pretraining, we co-train on two intuitive objectives: (i) predicting what happens next, in the
form of future visual observations, and (ii) predicting how the scene evolves, using a compact inter-
mediate representation known as latent actions{ﬂ By training with both objectives, the model learns
to capture both semantic intent and physical dynamics. In contrast, prior latent action pretraining
methods (Ye et al., |2024b; Bu et al., 2025} |Chen et al.| 2024} Bjorck et al., |2025) treat pretrain-
ing purely as policy learning in latent space, without leveraging video prediction or modeling state
transitions, and often use temporally coarse task-centric latent actions. Our framework instead pre-
dicts state transitions through video prediction and outputs a sequence of fine-grained motion-centric

"Latent actions can be viewed as action-like tokens that summarize the transition between states without
requiring access to ground-truth control commands
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Figure 1: We present ViPRA, which learns generalist robot policies from large-scale actionless videos by ex-
tracting motion-centric latent actions, which is used to pretrain a video-language model, and finally, finetuning
a flow matching decoder with minimal labeled data for smooth, high-frequency control.

latent actions (3 to 6 Hz) over short horizons, capturing high-frequency dynamics critical for con-
trol. We further incorporate optical flow consistency as an additional supervision signal, promoting
physically plausible and motion-aware latent representations.

Importantly, our pretraining leverages both unlabeled human and robot videos, which enables gener-
alization across embodiments (see Figure[T] left). This broad exposure to passive visual data sets the
foundation for effective finetuning with only a small number of teleoperated robot demonstrations.
For finetuning on these demonstrations, we employ a flow matching decoder (Lipman et al.} 2022)
that maps latent actions to smooth, continuous robot action chunks (see Figure|l] right). Unlike prior
vision-language-action models (VLAs) (Brohan et al.} 2023} [Kim et al.} 2024}, [Li et al., 2024a}; Blac
let al.| 20244 Qu et al.l [2025), which required thousands of hours of labeled action trajectories’} our
decoder aligns latent transitions with embodiment-specific motor behaviors. This design amortizes
inference latency via action chunking, enabling smooth, high-frequency control by producing mul-
tiple low-level actions in a single forward pass. Our policy can support control rates approaching
22 Hz, to our knowledge matched only by one other 7B-parameter model 2025).

In summary, our contributions are as follows.

(i) A scalable method to extract fine-grained motion-centric latent actions from unlabeled hu-

man and robot videos using perceptual and optical flow consistency losses.

(i) A novel pretraining framework for robot control that jointly predicts future visual states
and motion-centric latent actions within a unified video-language model.

(iii) A data-efficient pretraining—finetuning framework that integrates flow matching and action
chunking to enable smooth, high-frequency continuous control, operating at up to 22 Hz.

(iv) Demonstrate empirical gains of 16% on the SIMPLER benchmark and
13% on real world tasks over the strongest prior continuous control baselines.

2 RELATED WORK

Vision-Language-Action Models Vision-Language-Action models (VLAs) (Brohan et al, 2023}

[Kim et al.,[2024; L et al.,[2024a; [Black et al | Qu et al, [2025) extend vision-language models
(VLMs) (Touvron et al., 2023} (Chen et al., 2023} Driess et al.| 2023} [Karamcheti et al.| 2024} Beyer
et al, by imitation learning on action-labeled robot demonstrations (O’Neill et al., 2023).
Recent works explore auxiliary objectives including visual trace prediction (Niu et al.,[2024), chain-
of-thought reasoning 2022), and conversational instruction tuning [2024b).
However, all existing VLAs require extensive labeled action data, creating a fundamental scalability
bottleneck due to the prohibitive cost of data collection. Furthermore, these models focus primarily
on grounding language in visual semantics while lacking explicit mechanisms for modeling physical
dynamics or temporal structure in action generation. In contrast, ViPRA eliminates the labeled data
requirement by leveraging unlabeled videos during pretraining and incorporates temporal dynamics

210000 hours of pretraining OpenX data (O’ Neill et al.,2023) and 5-100 hours of fine-tuning demonstrations




Under review as a conference paper at ICLR 2026

through joint prediction of future visual states and multi-step latent actions, which provides robust
priors for high-frequency control.

Robot Learning from Videos Videos offer a scalable source of information about object dynamics,
task structure, and human behavior. Visual planning methods (Du et al., 2023a; |Wu et al.| |2023aj
Ko et al., 2023 |Du et al., 2024; |Baker et al., [2022; |Liang et al.,|2024; |Luo et al., 2025a) use genera-
tive video models to plan in video or video-language space and rely on an inverse dynamics model
to convert predicted frames into actions. While effective for long-horizon reasoning, these meth-
ods often incur high inference costs, limiting their suitability for high-frequency, dexterous control.
Different from the above, policy supervision approaches (Luo et al., 2025afb) use video models as
supervision or reward sources to train policies.

Recent work explores joint training for video generation and action prediction (L1 et al.| |2025; |Guo
et al.| 2024)), with (Li et al.| 2025) also introducing decoupled action decoding to mitigate inference
overhead, but evaluations are mostly on smaller-scale datasets, simulation, and do not demonstrate
scaling to internet-scale passive videos.

Other efforts leverage human videos to pretrain visual representations for downstream visuomotor
control (Nair et al., 2022} Dasari et al., [2023} | X1ao et al.| [2022; |[Karamcheti et al., [2023)), or extract
intermediate cues such as affordances (Bahl et al., 2023} [Kannan et al., 2023; |Bharadhwaj et al.,
2023} [Liu et al., |2022; |Goyal et al.| [2022), interactions (Zeng et al.| 2024), or visual traces (Wen
et al., 2023} Bharadhwaj et al., 2024; [Mandikal & Grauman) 2022; Bahl et al., [2022) from unla-
beled videos to guide policy learning. These approaches depend on structured priors or explicit
cue extraction, which can constrain scalability. In contrast, we learn motion-centric latent actions
that capture temporal dynamics and pair them with video-language grounding, enabling scalable
learning directly from large action-free video corpora.

Latent Action Spaces Latent action representations improve data efficiency by enabling learning
from action-free videos via self-supervised learning (Dwibedi et al.|, 2018} [Liang et al., [2025; |Seo
et al.| [2022; |[Schmidt & Jiang, [2024; |Cui et al., 2024)). Recent methods impose discrete informa-
tion bottlenecks with vector quantization encoders (van den Oord et al.| [2017) and predict these
tokens during policy learning (Ye et al.,[2024a; |Lee et al., 2024} |Yang et al.,2024a; Bu et al., 2025;
Chen et al.| 2024} |Bjorck et al.| [2025), achieving strong real world results through imitation. Some
train inverse dynamics models on limited labeled demonstrations before applying them to unlabeled
video (Baker et al.,[2022; Xu et al.,|2023)), while others treat latent actions as abstract embodiments
and jointly train policies with inverse dynamics model predictions across embodiments (Jang et al.,
2025). Another line of work uses these abstractions to build world simulators (Gao et al., [2025;
Bruce et al., [2024)) or plan in latent spaces (Ha & Schmidhuber, 2018; |Weber et al., 2017; |Hafner,
et al.|[2019; 2018} Lee et al.,2019; Wu et al., 2022} [Sekar et al.,2020) While these methods capture
physical dynamics effectively, they struggle to generalize to novel settings due to limited semantic
grounding. Video-language models can provide such multimodal grounding (Du et al.| 2023a}; Ko
et al., [2023; [Liang et al.| [2024; |Guo et al.| 2024} Du et al., [2024), but existing approaches are typ-
ically computationally heavy and slow at inference. In contrast to existing methods, ViPRA learns
fine-grained, motion-centric latent actions that capture temporal dynamics while leveraging a video-
language model (Liu et al.l 2024) for semantic grounding. We train a unified latent space from
large-scale, action-free human and robot videos, enabling cross-embodiment transfer. By predict-
ing action chunks during both latent pretraining and real-action finetuning, we amortize inference
latency and achieve smooth, high-frequency control.

3 BACKGROUND

We defer discussion on VQ-VAE for discrete latent actions, optical flow estimation, behavior
cloning, and flow matching for continuous control to Appendix [A]

4 VIDEO PREDICTION FOR ROBOT ACTIONS

A generalist robotic agent must combine precise low-level control with environment-agnostic high-
level intelligence. Video generation models are well-suited to this goal, as future-state prediction
captures both physical interaction detail and task-related semantic context. Achieving this requires
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Figure 2: ViPRA framework comprises of: (1) Latent Action Learning (left): A neural quantization bot-
tleneck extracts discrete latent actions z; from image sequences oo.r, in both human and robot videos, trained
via reconstruction 10ss Liyen to capture motion-centric dynamics. (2) Multimodal Pretraining (center): A
video-language model jointly predicts future observations o:+ g and latent action sequences z¢.+4+r—1 from
past frames (0:—1, 0¢) and task description ¢, using 10ss Lpreirain- (3) Continuous Finetuning (right): A flow
matching decoder maps latent actions to continuous robot actions a¢:¢+r—1 using noisy action conditioning
and loss Lrm, enabling smooth, high-frequency control.

effectively utilizing large-scale data, architectures that expose motion-centric signals, and stable
training pipelines. To this end, we present ViPRA: (i) learning motion-centric discrete latent ac-
tions from large-scale human and robot videos without action supervision, guided by perceptual
and optical flow consistency; (ii) pretraining a multimodal video-language model to jointly predict
future visual observations and latent action sequences, grounding temporal dynamics in semantics;
and (iii) finetuning a flow-matching decoder that maps latent actions to smooth, continuous control
using only a few hundred demonstrations. This hierarchy leverages the rich physical priors of video
models while ensuring the precision needed for real world robot control.

4.1 LATENT ACTION LEARNING FROM ACTIONLESS VIDEOS

We first train a latent action model to represent behavior in both human and robot videos without
requiring action supervision. As illustrated in Fig. 2] (left), this phase extracts motion-centric la-
tent actions z; that captures how the environment changes (inverse dynamics) and reciprocally also
models the visual observations in response to these implicit actions (forward prediction).

Given a length-(L~+1) observation sequence og.;, = [0g, 01, - . ., 0r,] sampled from human or robot
videos, our objective is to learn discrete latent action tokens z; = [z}, 22, . .. P ;=] that encode the
motion dynamics at each timestep t. Here, Niyene denotes the number of latent action components,
and each component z{ is quantized from a shared codebook C of size |C| = 8.

We train an inverse dynamics encoder Ig(z; | 0o.1,) that predicts latent action token z; by condi-
tioning on the full observation sequence og.r,. This non-causal design allows the latent action z; to
incorporate both past and future context, making it sensitive to local motion intent—for instance, dis-
tinguishing a pickup from a putdown based on surrounding frames. By providing the encoder with
the entire clip, we reduce reconstruction ambiguity and force z; to encode the minimal but sufficient
information to explain the local transition.

We jointly train a forward decoder F, (6¢+1 | 00.t, 20.¢) that predicts the future frame 6;41 given the
history of observations og.; and latent actions zg.;. This reconstruction task ensures that the learned
latent actions z; contain sufficient information to explain scene dynamics. The model is optimized
using three complementary loss components: pixel-level L; reconstruction loss L. for accurate
frame prediction, perceptual loss Ly pps (Zhang et al.l [2018) for semantic consistency, and optical
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flow consistency loss Lgow to encourage physically plausible motion patterns:

L+1 L
1 o 1 ..
Liow = I ; |OF(6¢, 6t—1) — OF(0¢, 04—1)|l; + I ; |OF(6¢, 6t41) — OF(04, 0441)[l; (1)

where OF(a, b) denotes optical flow between frames a and b computed via RAFT (Teed & Deng,
2020). This loss encourages predicted frames to exhibit motion patterns consistent with ground
truth, supporting temporally coherent dynamics. The total latent action learning loss combines all
components:

Liatent = Lrec + ALpips Lrpips + H(Step > aﬂow)/\ﬂow£HOW7 2)

where the flow loss is activated only after a,w Warm-up steps to avoid instability from poor early
reconstructions. Thus, latent actions serve as a representation of scene dynamics effectively bridging
between visual observations and any embodiment-specific control commands. We provide further
architecture details in Appendix

4.2 LEVERAGING MULTIMODAL VIDEO MODELS FOR ACTION PRETRAINING

After obtaining discrete latent actions, we design a pretraining scheme leveraging a powerful multi-
modal video prediction model. Such models are trained on large-scale datasets to jointly reconstruct
video tokens and predict aligned language captions, thereby encoding rich semantic cues and dy-
namic priors about how the world changes in their latent space. By aligning our discrete latent
actions z; with the outputs of the generative model, we can effectively pretrain a high-level con-
troller that can learn from video clips.

To this end, we jointly predict future visual tokens and latent actions, unifying dynamic scene under-
standing and abstract control representation in a temporally coherent latent space. Given the most
recent observations (0,1, 0;) and a task description ¢, the model predicts a future frame o, i that is
H steps ahead, along with a latent action sequence z¢.++ g—1 = [2¢, Zt41, - - - » 2t+ 1 —1] Tepresenting
the transitions leading to o4y pr. This multi-step horizon encourages meaningful and distinct scene
changes, providing robust conditioning for downstream action inference.

As shown in Fig. [2| (center), we build on the instruction-tuned LWM-Chat-1M (Liu et al., [2024)
as our base policy GGy and extend it with two modules for latent action modeling: (i) a Latent
Action Embedding head E, that maps each discrete latent token z; € C to a d,-dimensional
vector Z; = FEg(z}) in the model’s token space, and (ii) a Latent Action Token Decoder

H,, a multi-layer perception (MLP) that autoregressively predicts the next latent token éf“ =

Hy (Ge <c7 Ot—1,0¢, Oty H, 2<t, Z?)) from the transformer hidden state till position ¢. This al-

lows the model to generate latent action sequences in the same autoregressive manner as language
or video tokens, leveraging the multimodal token space learned during pretraining.

During training, we apply teacher forcing to both visual and action predictions. We use LWM’s VQ-
VAE encoder Evyq to encode ground-truth future frame o4y pr into Nigkens discrete tokens x4 g =
Evqo(ory ), which serve as supervision targets for the visual prediction ¢4 = Gg(c, 01—1, 01).
The pretraining objective Lpreirain combines the visual and action components as:

N(okens t+H_1 Nla!em
Lprelrain - E CE(jjé_y-Hv xi-i—H) + E E CE(éllga Z]Zg)a (3)
i=1 k=t i=1
ﬁimg Lot

where CE(a, b) denotes the standard cross-entropy loss between logits for a and label b.

4.3 CONTINUOUS ADAPTATION

While the latent action pretrained video model provides robust semantic grounding, it lacks the
physical precision needed for smooth, low-level robot control. To address this gap, we augment
the pretrained model to output continuous actions, utilizing a flow matching decoder trained on real
robot trajectories. This adaptation enables temporally smooth, physically consistent motor com-
mands conditioned on visual and linguistic contexts.
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As shown in Fig. 2] (right), we augment the video model Gy with two action-specific components:
(i) an Action Encoder E., and (ii) a Flow Decoder I1,. The encoder £, embeds continuous noisy
actions 2, € R¥*P into the token space, while the decoder H, n predicts a flow field over the action
chunk. Following the flow matching framework from Eq. [/] we sample a target action sequence
agtr g1 € REXP draw a noise sample x¢ ~ N(0, I), and interpolate:

xs=8-20+ (1 —8) aptym—1, S~ Beta(a,bd).

We use ¢ = 1.5 and b = 1 for sampling from Beta distribution. This noisy input is encoded via
fs = Ey(zs, s), and passed into the transformer along with VQ-encoded image tokens of (0;—1, 0¢)
and language prompt c. The model predicts a flow field ¢ = H, (Gg (¢, 0t—1, 04, fs)), which is
supervised using the flow matching objective from Eq. [0}

Lewt = agsm—1 —z0 — (1 —5) - gll3-

At inference time, given the visual history (o;—1, 0;) and task instruction ¢, we iteratively solve for
the continuous action chunk a;.;+ i1 using forward Euler integration (Eq. of the predicted flow
field from s = 0 to s = 1, over 10 uniform steps with As = 0.1. This continuous control refinement
layer injects dynamics consistency and smoothness unavailable to the discrete latent tokens alone.

5 EXPERIMENTS

To evaluate ViPRA, we conduct extensive experiments in both simulation and the real world to
address the following research questions: (i) Can a generalist policy be trained to leverage both the
physical dynamics and semantic understanding of video models? (ii) Does ViPRA efficiently exploit
large-scale, actionless video data? (iii) Can multimodal pretraining yield strong high-level priors for
downstream policy? (iv) How well does ViPRA adapt to high-frequency continuous control settings?
(v) Does ViPRA outperform methods that do not exploit video foundation models?

5.1 ENVIRONMENTS & TRAINING

Training Dataset For learning latent actions and pretraining the video-language model, we use 198k
human videos from Something-Something v2 (Goyal et al., 2017) and a subset of actionless robot
videos from the OpenX (O’Neill et al.,[2023)) dataset: 87k Fractal (Brohan et al.||2022)) videos, 25.4k
BridgeV2 (Ebert et al.| [2021)), and 85.6k Kuka (Kalashnikov et al.l | 2018) videos. We describe train-
ing details and hyperparameters for latent action learning in Appendix |B| pretraining in Appendix|[C|
and flow matching finetuning in Appendix [D]

Simulation Benchmarks Following prior latent action works (Ye et al.,[2024b; Bu et al.| [2025), we
benchmark ViPRA in SIMPLER (Li et al., [2024c), an open-source suite for evaluating generalist
manipulation policies. We evaluate on four Bridge task with a 7-DoF WidowX arm, a benchmark
designed to test generalization across diverse manipulation goals. Since SIMPLER lacks finetuning
data, we collect 100 diverse multi-task trajectories using a pretrained VLA model (Ye et al., 2024b).
We provide details about our SIMPLER tasks and LIBERO Long benchmarks in Appendix [El

Real World Manipulation While SIMPLER already provides a strong correlation between sim-
ulated and real world policy performance, we further strengthen our findings with rigorous eval-
uations on physical robots. We evaluate ViPRA on a bimanual setup with two 7-DoF Franka
Panda robots. For single-arm experiments, we finetune on three multi-instruction tasks: (1) pick
up cloth and cover (object), (2) pick up (object;) and place on (objects), and (3)
pick up (color;) cup and stack on (colors) cup. Weuse GELLO (Wu et al.,2023b) tele-
operation to collect 180 trajectories, per task spanning 5 cup colors and 10 object types. For both
simulation and real world settings, we report full success and partial success; partial success is de-
fined as grasping the correct object, and full success requires completing the task (e.g., placing,
stacking, covering). We evaluate with both seen and unseen objects, textures, colors, and shapes to
test generalization. For real world evaluation, policies run using only a front-facing camera. We pre-
dict action chunks of length H=14 and replan after executing the first 7 steps. For this evaluation,
we cap our policies at an effective closed-loop control rate of 3.5 Hz, though they can also operate
at higher frequencies upto 22 Hz.
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Figure 3: Real World Evaluations (Left) We report full and partial success rates on three manipulation tasks.
ViPRA-FM significantly outperforms baselines. (Right) We show our physical robot setup and task objects.

Discrete Actions Continuous Actions
Task Scratch-AR  VPT OpenVLA LAPA ViPRA-AR Scratch-FM UniPI 7o UniVLA ViPRA-FM
Success Rates
StackG2Y 542 45.8 25.0 333 66.7 16.7 2.7 0.0 - 54.2
Carrot2Plate 583 37.5 20.8 41.7 62.5 333 2.7 20.8 - 50.0
Spoon2Cloth 37.5 70.8 50.0 66.7 66.7 50.0 0.0 4.17 - 66.7
Eggplant2Bask 58.3 50.0 58.3 70.8 83.3 66.7 0.0 83.3 - 79.2
AVG 52.1 51.0 38.6 53.1 69.8 41.7 1.7 27.1 42.7 62.5
Grasp Rates
StackG2Y 62.5 62.5 70.8 66.7 66.7 45.8 20.8 12.5 - 62.5
Carrot2Plate 54.2 54.2 375 62.5 62.5 45.8 332 250 - 54.2
Spoon2Cloth 75.0 79.2 75.0 87.5 75.0 62.5 222 16.7 - 79.2
Eggplant2Bask 66.7 70.8 91.7 79.2 100 87.5 16,0 917 - 91.7
AVG 65.6 66.7 68.8 73.9 76.1 60.4 23.1 36.5 50.0 71.9

Table 1: We report success rates and grasp rates on four bridge tasks in SIMPLER benchmark suite.

5.2 BASELINES

We evaluate ViPRA against strong baselines across discrete and continuous action formulations.

Scratch. As a reference, Scratch finetunes the video-language backbone (LWM) (Liu et al.| 2024)
directly on downstream tasks with image history and action chunking, without any pretraining. It
establishes baseline performance when no latent action or video-based pretraining is used.

VLA baselines. We include OpenVLA (Kim et al.| [2024) and 7y Black et al.| (2024). OpenVLA

discretizes actions and adds a one-step autoregressive (AR) action predictor on top of a Prismatic-
7B (Karamcheti et al.}[2024), while o augments a PaliGemma-3B with a chun-
ked flow matching (FM) decoder. Both use action-labeled robot demos from OpenX
2023)) containing 970k trajectories, while 7y also uses proprietary robot data.

Latent action baselines. We include LAPA (Ye et al.|[2024b)) and UniVLA (Bu et al.}[2025)), both of

which learn one-step temporally coarse latent actions without video prediction during pretraining.
UniVLA improves upon LAPA by learning language-conditioned task-centric actions in DINOv2
space. UniVLA uses a Prismatic-7B backbone with a L1 action decoder, whereas LAPA uses an
LWM backbone with one-step AR prediction. Both rely on OpenX demos, with UniVLA addition-

ally leveraging Ego4D (Grauman et al[20224d) and GNM (Yang et al.| [2024b).
Video learning baselines. We include UniPI (Du et all,[2024) and VPT (Baker et al [2022), both

of which leverage videos for pretraining. UniPI trains a video diffusion model and trains an IDM to
recovers actions, while VPT trains an IDM on labeled data to extract pseudo-actions that are then
used to pretrain an LWM backbone. Reported results are from 2024b), which evaluated
them on SIMPLER in a comparable setting.

We include both ViPRA-AR, aligned with discrete autoregressive baselines, and ViPRA-FM,
aligned with continuous flow-matching methods.

5.3 SIMULATION RESULTS

As shown in Table [I] ViPRA achieves the best average success rate in both discrete and continu-
ous settings. In the discrete setting, VIPRA-AR surpasses LAPA and OpenVLA by a large margin
(69.8% vs. 53.1% and 38.6%), excelling in precision-heavy tasks such as StackG2Y. In the contin-
uous setting, ViPRA-FM outperforms Scratch-FM by 20.8%, my by 35.4%, and UniVLA by 19.8%,
showing the benefits of motion-centric latents and multimodal video pretraining over training from
scratch. Interestingly, due to the low noise and low ambiguity of the simulation setting, we find that
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Figure 4: Positional codebook usage differences across action categories. Each heatmap shows the difference
in per-position token usage between two groups: (left) vertical vs. horizontal, (middle) left — right vs. right
— left, and (right) up vs. down. ViPRA learns positionally sensitive codes, with certain entries (e.g., 0, 2, 5)
showing systematic variation, indicating that both token index and positions encode action dynamics.
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Figure 5: Latent action transfer rollouts: (Top) Figure 6: Action smoothness: ViPRA-FM (blue)
Video oy with hand moving the bottle up. (Middle) produces smooth, continuous trajectories, while LAPA
Video oh3"™™ with hand putting the phone down. (Bot- (green) exhibits local discontinuities and random
tom) First, up latents are extracted using the inverse spikes, often around contact events, despite tracking
model 2055 = I5(0gn ), then use the forward model and the overall trend. During real world deployment, such
first down frame to rollout an up video 059"~ *UP = discontinuities triggered the emergency brake mecha-
Fo(08°%N, 25%) where hand is picking the phone up. nism of the robot due to abrupt motor torque jumps.

ViPRA-AR outperforms the more expressive ViPRA-FM, which is slower to converge. However,
ViPRA-FM achieves competitive performance, outperforming all other continuous/discrete base-
lines. ViPRA also surpasses other video learning approaches i.e., UniPI and VPT. UniPI frequently
generates action sequences that diverge from the given instruction in longer-horizon settings, while
VPT provides only limited gains, indicating that IDM-derived pseudo-labels are sensitive to envi-
ronment shifts. In contrast, VIPRA’s joint use of latent action prediction and future state modeling
yields stronger cross-environment transfer and more reliable task execution.

5.4 REAL WORLD RESULTS

Figure [3] shows results on three real-world manipulation tasks. ViPRA-FM attains the best perfor-
mance with a 54.1% average success rate, outperforming my (40.1%) and Scratch-FM (23.8%). It
also demonstrates robust retry behavior, repeatedly attempting grasps after failures, which leads to
very high partial success rates—especially in Cover-0bj, where the cloth is reliably grasped even if
not always placed correctly. While 7 benefits from task-specific fine-tuning, ViPRA-FM achieves
higher success with far less labeled data by leveraging dynamics priors from unlabeled videos. We
exclude discrete action models from real-world evaluation, as their bin-based predictions exhibited
unstable spikes under physical noise, often triggering emergency stops on the Franka arm. We pro-
vide additional analysis on generalization and robustness in Appendix |G|and challenging bimanual
task evaluations in Appendix [H]

5.5 ABLATIONS & ANALYSIS

Isolating effect of future state and latent prediction. Table [2| disentangles the contributions of
future state prediction and latent action chunking. The LAPA baseline (latent-only) reaches 53.1%,
while adding state prediction in VIPRA—-AC boosts performance to 59.2%, showing that anticipating
future observations improves control even with 1-step latents. Removing state prediction from our
setup in ViPRA-SP2 causes a drop from 69.8% to 59.4% (AR) and from 62.5% to 53.2% (FM),
underscoring its importance for policy transfer. A state-only variant VIPRA-LA achieves 60.7%,
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comparable to VIPRA-AC but still below the full model, indicating that state prediction alone is not
sufficient. Finally, adding state prediction at finetuning ViPRA+SP3 degrades performance (53.1%
AR, 31.3% FM), since the autoregressive structure couples action prediction with video prediction,
causing compounding errors that drift irrecoverably on out-of-distribution states. ViPRA mitigates
this by jointly predicting future visual tokens and latent action chunks during pretraining only.

Effect of acl_:ion chunking. We apply chunking (Zhao Exp. Pretrain Finetune Suce.
et al., .2(.)23) in both latent apd real action spaces: during o0 Istep L I-step A 531
pretraining the model predicts latent action sequences, ViPRA-AR FS+ H-stepL H-step A 69.8
and during finetuning it outputs continuous chunks via —I;‘SZ 1;15 + l-SLtePL ;}Step AA gg-i
. . . . . _ - -step -step .

flow matching. Removing chunking in ViPRA -AC re- FS only Ho-step A 0.7
duces performance to 59.2% (AR) and 44.8% (FM), as  4+sp3 H-stepL FS+ H-step A 53.1
smgl.e-step actions f'ful to capture srpooth temporal dy-  VipRaA-FM FS + H-step L. H-step A 62.5
namics. By combining chunking with future state pre- -Ac FS + 1-step L 1-step A 44.8
diction, the full model achieves the best results of 69.8% —SP2 H-step L H-step A 53.2

+SP3 H-stepL FS+ H-step A 313

(AR) and 62.5% (FM), showing that the two objectives
complement each other Finally, action chunking is not Table 2: Ablation of future state pred., la-
only critical in pretraining but also enables robust, high- tent pred., and action chunking. Shorthand:
frequency control at test time. With KV caching, ViPRA’s  FS = future state pred., L = latent action, A
flow matching decoder runs at 1.95Hz per chunk, sup- = action pred., =14 chunk size.

porting effective control rates up to 22 Hz on hardware (chunk size 14). We provide additional dis-
cussion on the connection between action chunking and high-frequency execution in Appendix [G.5]

ViPRA enables smooth continuous control. To assess action smoothness, we compare ViPRA-FM
(blue) with LAPA (Ye et al.| | 2024b)) (green), a discrete policy, during closed-loop rollout. Both mod-
els are loaded into our inference pipeline and replayed over trajectories from the finetuning dataset,
simulating deployment under real visual observations. As shown in Figure [6] both methods fol-
low the intended trend, but LAPA exhibits sharp local spikes at contact events or occlusions, where
small perceptual shifts trigger abrupt bin flips. In contrast, VIPRA-FM’s flow matching head yields
smooth, demonstration-aligned commands. Since such discontinuities are unsafe on hardware, we
restrict real world comparisons to continuous baselines. We provide more analysis on discrete and
continuous policies in Appendix[F] showing how quantization, loss design, and control space affect
action smoothness and deployment.

Latent action analysis. In Figure 5] a cross-video rollout test illustrates the correlation between
latent actions and real action dynamics: injecting latents encoding upward motion from one video
(top) into the opening frame of a downward moving video (middle) causes the reconstructions to
move upward (bottom), demonstrating transferable, dynamics-aware semantics. Finally, Figure [
analyzes codebook usage across categories by computing token-position x code-index histograms.
The results indicate that both the choice of codebook entry and its position within the latent action
sequence encode structured information about motion direction and dynamics.

6 CONCLUSION AND FUTURE WORK

Video-language models provide a strong starting point for generalist robotic agents, as they capture
both semantic intent and temporal dynamics crucial for real-world actions. Building on this, we
introduced ViPRA, which learns motion-centric latent actions from large-scale actionless videos,
pretrains a video-language model to jointly predict future states and latent actions, and refines these
priors into smooth, high-frequency motor commands with a flow-matching decoder trained on only
a few hundred demonstrations. Extensive evaluations in simulation and on real robots show that
ViPRA outperforms methods relying solely on semantic pretraining, offering a scalable blueprint
for general-purpose agents.

A key perspective is that the latent action decoder functions as a world model: given latent actions, it
predicts future observations and can be conditioned on policy-sampled latents to generate multiple
visual plans. This can enable alignment via reinforcement learning and test-time scaling through
planning trees, where VLMs or heuristic functions act as reward models. Looking forward, extend-
ing ViPRA to dynamic, unstructured environments and integrating richer sensing modalities (e.g.,
wrist cameras, proprioception, tactile feedback, depth) remain exciting directions.



Under review as a conference paper at ICLR 2026

7  REPRODUCIBILITY

All models and datasets used in our work are taken from open-sourced components. We take the pub-
licly released LWM-Chat-1M (Liu et al., [2024) as our base video-language model and build on top
of that. For latent action learning and pretraining video-language model, we use publicly available
datasets: Something-Something (Goyal et al., [2017)), Fractal (Brohan et al., 2022), BridgeV2 (Ebert;
et al.[2021)), and Kuka (Kalashnikov et al., 2018)). For SIMPLER (Li et al., 2024c) benchmarks, we
collected finetuning trajectories by deploying a pretrained VLA model (Ye et al., [2024b). We will
release this dataset for the community to reproduce our benchmarks. Moreover, we describe training
details, hyperparameters, and model architecture for latent action learning in Appendix [B] pretrain-
ing in Appendix [C} and flow matching finetuning in Appendix [D] We will release code, models, la-
tent action labeled pretraining data and benchmark scripts athttps://vipra-robot.github.io.
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As part of the supplementary material, we include additional details about the following.

[A] Background: Covers key paradigms relevant for VIPRA: VQ-VAE for learning discrete latent
actions, optical flow estimation, behavior cloning for direct action prediction and flow matching
for smooth continuous control.

Latent Action Learning: Architecture design, loss formulations, and training protocols for dis-
crete action codebook learning, including hyperparameter configurations and optimization strate-
gies.

Multimodal Video-Action Integration: Implementation details for extending LWM with latent
actions, including embedding architecture, decoder design, and joint training methodology.

Continuous Control via Flow Matching: Complete specification of noise scheduling, action
encoder/decoder architectures, and end-to-end training procedure.

[El Simulation Benchmarks: Detailed description of SIMPLER tasks and additional LIBERO Long
benchmark.

[B Action Output Analysis: Comparative visualization and discussion of predicted action trajecto-
ries across discrete and continuous policies, highlighting the impact of quantization, loss formu-
lations, and control space choices on smoothness and deployment behavior.

[Gl Real World Experiments: Detailed description of hardware setup, task design, policy general-
ization, retrying behavior, and the impact of action chunking on control frequency and real-time
performance in physical deployments.

H Bimanual Manipulation Tasks: Evaluation of VIiPRA-FM on two real world dual-arm tasks
requiring spatial coordination and tool use, including task setup, challenges, quantitative results,
and rollout visualizations from real robot executions.

Code, checkpoints, and latent action labeled data and rollout videos will be released at: https:
//vipra-robot.github.iol
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A BACKGROUND

We review key paradigms relevant for ViPRA: VQ-VAE for imposing information bottleneck to
learn discrete latent actions, optical flow estimation, behavior cloning for direct action prediction
and flow matching for smooth continuous control.

Vector-Quantised VAEs (VQ-VAE). An encoder e; maps an observation o; to a cootinuou lat

estimation,ent vector iy = [ﬁ%, N iziv ], which is quantized to a sequence of nearest codewords
2t = [2},...,2]] € C using a shared discrete codebook. A decoder d; reconstructs the observation

0¢ = dy(2z + Err), where Err is a gradient estimator used to allow backpropagation through the
non-differentiable quantization operation.

In traditional VQ-VAE (van den Oord et al., 2017), this estimator takes the form

Errste = sg(hy — 21), 4)

where sg(-) denotes the stop-gradient operator. The decoder input z; + Errsrg preserves the forward
pass while enabling gradients to bypass the non-differentiable argmin. However, this approach
typically requires auxiliary losses, such as the codebook and commitment losses, to stabilize training
and encourage codebook usage.We adopt the NSVQ formulation (Vali & Béckstrom) 2022)), which
replaces the deterministic STE with a stochastic noise-injected surrogate

Errnsvg = [|2e — ﬁf” 3 5

where ¢ = ¢/||¢|| and € ~ N(0,I). The decoder thus receives 6; = dy(z¢ + Errnsvq). Crucially,
NSVQ enables gradients to flow to both the encoder and codebook using only the reconstruction
loss, without requiring additional codebook loss terms. The noise-injected gradient estimator, com-
bined with the unused codebook replacement technique applied during early training, significantly
improves training stability and mitigates codebook collapse, a common issue in VQ-VAE training.

RAFT based Optical Flow Given two images, o, and oy, RAFT (Teed & Dengl| 2020) obtains the
dense displacement field f, ., € RHXWX2 that maps each pixel in frame o, to its location in op. It
first extracts feature maps ¢(0,), ¢(0p) € RH *W'%d (where ¢ is the feature extractor) and builds
the all-pair correlation R, with R;j i = (¢ij(0a), dri(0p)). The flow prediction is then refined
iteratively: £*+1) = £(*) 1 Af(*¥)(R). When applied to temporally close frames in a video, this
flow field f can give a good estimate of motion consistency.

Behavior Cloning (BC) is a supervised learning paradigm in robotics that learns policies directly
from expert demonstrations. Given a dataset D = {(o;,a;)}Z_; of observation-action pairs from
expert trajectories, BC trains a parameterized policy mpc(at|o¢; ) to minimize a distance metric
between predicted and ground-truth actions:

Hgn ]E(ot,at)ND [d(WBC (at|0t; 9), at)] ) (6)
where d(-, -) is typically the L1 or L2 distance for continuous actions or cross-entropy for discrete
actions. This framework has been extended with high-capacity architectures: diffusion models (Chi
et al.;|2023; Zhao et al., 2023) parameterize mpc(at|os; 0) as a denoising process that learns p(a|o;)
through iterative refinement, while VLAs leverage pretrained language models (Touvron et al., 2023
Qwen et al., [2024)) and visual encoders (Radford et al., 2021; |Oquab et al., [2023} [Tschannen et al.,
2025)) as the backbone architecture for , enabling multimodal grounding of actions in visual and
linguistic contexts.

Flow Matching (Lipman et al.|[2022) provides an alternative to diffusion models for learning con-
tinuous normalizing flows. While diffusion models learn the full denoising process, flow matching
directly learns the vector field that transports samples from a source distribution to a target distri-
bution. This approach offers computational advantages for robotics applications where real-time
inference is critical.

Flow matching trains a neural network gy to predict the velocity field along a straight-line interpo-
lation path. Given a source sample z( (typically Gaussian noise) and target sample x; (e.g., robot
actions), the interpolation creates a path:

us=s8-x0+ (1 —8) 21, where s € [0,1]parameterizes the interpolation @)
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The model learns to predict the velocity field that guides samples along this path:
5ls = 9 (us, s|ly), where y represents conditioning inputs (8)
S

In robotics applications, y typically includes visual observations and language commands that spec-
ify the desired behavior.

The training objective teaches the model to predict the correct velocity by minimizing the difference
between predicted and true flow direction:

2
Lem = E(yz0)~D, s~ut]0,1] H 1T — (1—s)- go(us: 5| y)HQ- ©)
—_——
true direction predicted velocity

At inference time, samples are generated by integrating the predicted velocity field from noise (s =
0) to the target (s = 1):

UstAs = Us + As - ggp(us, sly), where As is the integration step size (10)

This produces the final sample ©; ~ wu;. Forward Euler integration is commonly used due to its
efficiency (Black et al., |2024)), though more sophisticated solvers like Heun’s method or Runge-
Kutta can improve stability for high-dimensional control tasks (Kutta, [1901; Runge, [1895). Flow
matching has demonstrated superior smoothness and precision compared to direct action prediction,
particularly for temporally extended manipulation tasks (Black et al.,|2024; |Bjorck et al., 2025)).
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B LATENT ACTION LEARNING

We detail our latent action learning framework in Algorithm[I] which extracts discrete action tokens
from video sequences using a combination of reconstruction, perceptual, and optical flow losses. A
detailed diagram of this procedure is shown in Figure [/} and the complete training configuration—
including model architecture and optimization hyperparameters—is provided in Table 3]

The inverse dynamics encoder maps each frame o, into a sequence of spatial features using a DI-
NOv2 (Oquab et al.,[2023)-initialized backbone. These features are enriched with clip-level context
through factorized spatio-temporal attention layers, where the temporal branch employs bidirec-
tional attention to aggregate information across the full sequence. The contextualized features are
then discretized via Noise-Substitution Vector Quantization (NSVQ) (Vali & Backstrom),2022), pro-
ducing Niyen discrete codes selected from the shared codebook C, which serve as the latent action
tokens z;.

The forward decoder mirrors this architecture with a factorized spatio-temporal transformer, but
applies causal temporal attention so that predictions depend only on the past. It jointly attends to
the latent action sequence zj.; and the observation history og.; to reconstruct the next frame o4y .
In addition, we integrate the action-conditioning modules proposed by (He et al., [2025]) before each
spatio-temporal block in the decoder to better align action tokens with visual dynamics.

Algorithm 1 Latent Action Learning (Training Step)

Require: Video clip of L+1 observations og.;, € R(EH1)xHXWx3
Require: Hyperparameters: LPIPS weight A pps, Flow weight Agow, Flow start step agow
Require: Codebook C € RE*P with K codes of dimension D

1: Extract visual features: fo.;, < DINOV2(o0o.r,)

2: Compute contextual embeddings: ho.r, < Ig(fo.1)

3: fort =0to L —1do

4:  Quantize embedding to latent: z; < NSVQ(h¢,C)

5:  Decode next frame: 6;11 < Fu(00:¢, 20:¢)

6: end for
7
8

L1 4
¢ Lree Zt:01||0t+1 - 0t+1||1
-1 .
9: ELPIPS < Zf:() LPIPS(Ot+1,Ot+1)
10: if step > agow then
11:
12 Loow = £ 3 (IOF(@1,61-1) = OF(or,01-1) [1+ [|OF (61, 6141) — OF(or, 014.1)]|1 )
13: else
14: Laow < 0
15: end if
16:
17: Liatent <= Lrec + ALpps LLpips + Afiow Leiow
18: Update parameters via AdamW optimizer
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Figure 7: Latent action learning framework.
Given a sequence of frames oo.r,, an inverse dy-
namics encoder Ig(z: | o00.) maps the obser-
vation clip into discrete latent tokens z; via vec-
tor quantization. A forward decoder Fi (041 |
00:t, 20:¢) then reconstructs the next frame 6441
conditioned on the observation history and latent
action sequence. Training combines reconstruc-
tion, perceptual (LPIPS), and optical flow consis-
tency losses to ensure that the latent tokens cap-
ture physically grounded and temporally localized
action information.

Hyperparameter Value

Training Configuration

Optimizer AdamW

Base Learning Rate le-4

DINO Enc. Learning Rate  1e-5

Optimizer Momentum 81,82 = 0.9,0.99
Batch Size 128

Grad. Norm Clip 4.0

Total Steps 240000

Image Augmentation RandomResizeCrop
Flow Start Step aow 60000

Losses

LPIPS Weight Appips
Flow Weight Agow
GPU

Liec + ALpips LLpips +
flow ~flow

0.5

0.1 (after aow)

8 Nvidia H100 (168
hours)

Inverse Dynamics Encoder /

Backbone Init.

DINOV2 (Oquab et al.]
2023)

Embedding Dim 768
Spatio-temporal Layers 6

Attention Heads 16

Attention Head Dim 64

Latent Action Quantization

Codebook Size |C| 8

Quantized Token Dim 32
Quantization Method NSVQ (Vali &

Codebook Refresh Interval

Codebook Refresh
Strategy

Biackstrom)|2022)

Every 10 till 100, every
100 till 1000, every 1000
till 10000

Re-init Unused,
Re-shuffle Used

Forward Decoder F,

Embedding Dim
Spatio-temporal Layers
Attention Heads
Attention Head Dim

768
8
16
64

Table 3: Hyperparameters for latent action learning.
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C MULTIMODAL VIDEO PRETRAINING WITH LATENT ACTIONS

We augment a pretrained multimodal video model Gy (LWM-Chat-1M (Liu et al., 2024)) with an
embedding layer £y and a decoder H, for latent action processing. The model jointly predicts
future visual tokens and latent action sequences, conditioned on past frames and task context.

The latent action embedding head Ey maps each code z; € C into the token space of Gy, and
the decoder head H,, predicts next-token logits over the latent vocabulary. Training uses teacher
forcing for both video tokens (from a frozen VQ-VAE) and latent tokens with cross-entropy loss.
The complete training procedure and hyperparameters are detailed in Algorithm [2and Table ]

Algorithm 2 Multimodal Video Pretraining via Video and Latent Action Prediction

Require: History frames: (0;—1, 0;)
Require: Target frame: oy 7
Require: Task description: ¢ (text string)
Require: Labels i.e. latent action chunk 2., 1 € cH
Require: Pretrained models: VQ-VAE encoder Evq, video model Gy
Require: Trainable components: random initialized embedding layer £y, decoder head Hy,
1: Tokenize input frames: x;_1, z; < Evq(0i—1), Evo(ot)
Tokenize target frame: g < Evo(0i+m)
Encode text prompt: ¢ < Tokenizer(c)
Embed latent actions: Z.;ym—1 < Eg(2e:0+m-1)
for : = 1 to Nioxens do }
&, gy Go(¢,my_1,m, &7 ;) { Autoregressive prediction}
end for
Limg 4 SNk CE(# 2, ;) {Image token loss}
9: fork=ttot+ H —1do
10:  for i = 1 to Niyen: do

A A ol

11: 2]2 — Hw(GQ(éaxtfhxhxt‘FHaZ<kazk<i))
12:  end for
13: end for

14: Lo < S0 H S M CR(21 ) 28) { Action token loss}
15: Lprewrain < Limg + Lact {Total loss }
16: Update Gy, £y, and Hy, using gradient descent
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Hyperparameter Value

Model Setup

Video Model LWM-Chat-1M (Liu et al., [2024)
(initialized)

Tokenization Backbone VQ-VAE (frozen)

Prompt Tokenizer BPE tokenizer

Latent Action Vocabulary Size |C| 8

Latent Embedding Dim (E4) 4096

Latent Decoder Type (Hy) MLP

Latent Decoder Layers 1

Latent Decoder Hidden Dim 2048

Training Configuration

Optimizer AdamW

Learning Rate 4e-5

Weight Decay 0.0

Optimizer Betas (0.9,0.95)

Batch Size 512

Total Steps 50,000

Dropout 0.1

Gradient Clipping 1.0

Mixed Precision bfloatl6

GPU 8 Nvidia H100 (144 hours)

Prediction Targets

Prediction Horizon H 14
Image Token Loss Cross Entropy
Latent Action Loss Cross Entropy

Table 4: Hyperparameters for multimodal video pretraining to jointly predict future visual state and
latent action sequence. The video model is initialized from LWM-Chat-1M and trained jointly with
lightweight latent action modules.
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D FLOW MATCHING DECODER FOR CONTINUOUS CONTROL

We extend the pretrained video model Gy with two components for continuous control. Specifically,
we introduce an action encoder head F, that maps each continuous noisy action x, into the model’s
embedding space, and an action decoder head H,, that predicts the flow field used to recover the full
action chunk.

The resulting model, denoted g,,, consists of three key components: the pretrained video model Gy,
the action encoder £, and the flow decoder H,,. During training, we sample a noisy interpolation
between a standard Gaussian vector and the ground-truth action chunk, and supervise the predicted
flow toward the true actions using visual and task context. The full training procedure is detailed in
Algorithm 3] Corresponding neural design choices and hyperparameters are include in Table [5]

Algorithm 3 Flow Matching for Continuous Control

Require: Image history frames (0;—1, 0¢),

Require: Task description: c (text string)

Require: Action chunk as.;; 1 € R¥?*P {D-dimensional actions}
Require: Pretrained models: VQ-VAE encoder Evq, video model Gy
Require: Trainable components: action encoder E, flow decoder H,,
: Sample timestep s ~ Beta(1.5,1.0)

Sample noise zo ~ N(0, I)

Compute interpolation: zs < s - 29+ (1—8) - ppr -1
Tokenize input frames: x;_1, z¢ < Evq(oi—1), Evo(or)

Encode text prompt: ¢ < Tokenizer(c)

Encode noisy actions: f; < E(zs,s)

Predict flow field: § < H,, (Go (¢, x1—1, ¢, fs))

Lem < ||agtrm—1 — zo — (1—9) §||§ {Flow matching loss}
Update parameters of £, G, and G via gradient descent

VR ANk

Hyperparameter Value

Noisy Action Encoder Head (E)

Architecture 2-layer MLP

Hidden Dim 4096

Embedding Dim (dq) 4096

Activation GELU

Dropout 0.1

Flow Decoder Head (G;)

Input Dim 7 (End-Effector Deltas) or 8 (Absolute
Joint States)

Architecture Single linear projection

Flow Matching Setup

Interpolation Timestep s Beta(1.5, 1.0)

Noise Distribution xo Standard normal N(0, I)

Prediction Horizon H 14

Integration Method (Inference) Forward Euler, N = 10 steps

Training Configuration (follows TableEI}

Total Steps 12000 (SIMPLER)

Table 5: Architecture and hyperparameters used for continuous control. Training settings (optimizer,
schedule, etc.) match those used during pretraining.
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E SIMULATION BENCHMARKS

E.1 SIMPLER BENCHMARK

Following prior latent action works (Ye et al.l 2024b; [Bu et al., [2025)), we benchmark ViPRA in
SIMPLER (Li et al. 2024c), an open-source suite for evaluating generalist manipulation policies.
We evaluate on four Bridge tasks with a 7-DoF WidowX arm, a benchmark designed to test gener-
alization across diverse manipulation goals. Since SIMPLER does not provide finetuning data, we
collect 100 diverse multi-task trajectories using a pretrained VLA model (Ye et al.,[2024b)) to adapt
policies before evaluation. The tasks are as follows:

* Spoon2Cloth: The instruction is put the spoon on the towel. The spoon is placed on a
vertex of a 15 cm square on the tabletop, and the towel on another vertex. The spoon’s orientation
alternates between horizontal and vertical, requiring the robot to re-orient its gripper. This task
evaluates both grasp selection and orientation adjustment.

» Carrot2Plate: The instruction is put carrot on plate. Same setup as Spoon2Cloth, but with
a carrot and a plate. While similar in layout, this introduces a different geometry and surface,
requiring adaptation in grasping and placement.

» StackG2Y: The instruction is stack the green block on the yellow block. A green
block is placed on a vertex of a tabletop square (10cm and 20 cm edges) and a yellow block
on another. Success requires precise alignment and careful release, making it a fine-grained ma-
nipulation task that stresses stability and accuracy.

* Eggplant2Bask: The instruction is put eggplant into yellow basket. An eggplant is
dropped into the right basin of a sink and a yellow basket in the left basin. The eggplant is
randomized in pose but ensured to be graspable. This task evaluates robustness to shape variabil-
ity and placement under uncertainty, as the object must be reliably picked and transferred across
workspace regions.

We evaluate performance using two metrics: success rate and partial success rate (grasp rate).
Success rate measures whether the full task goal is completed (e.g., spoon placed on towel, block
stacked without falling, eggplant deposited into basket). Grasp rate captures whether the robot
is at least able to establish a successful grasp on the object, even if the subsequent placement or
stacking is not achieved. This distinction is important: grasping reflects a fundamental capability
for initiating manipulation, while successful completion requires the integration of grasping with
precise transport and placement. Together, these metrics provide a more comprehensive view of
policy competence, distinguishing between failures due to perception/grasping versus those arising
from downstream control and placement.

E.2 SIMPLER RESULTS

We report both end-to-end success rate and grasp rate in Table [I] Across discrete actions set-
ting, VIPRA-AR attains the best average success (69.8%), exceeding LAPA (53.1%), VPT (51.0%)
and OpenVLA (38.6%). It leads on precision-heavy StackG2Y (66.7% vs. 54.2% Scratch-AR,
45.8% VPT) and Carrot2Plate (62.5%), and remains competitive on Spoon2Cloth (66.7%, near
VPT’s 70.8%). On Eggplant2Bask, VIPRA-AR (83.3%) significantly outperforms other methods,
demonstrating strong transport and placement.

In the continuous setting, VIPRA-FM achieves the highest average success (62.5%), outperform-
ing Scratch-FM (41.7%), g (27.1%), and UniVLA (42.7%). It is the strongest continuous model on
StackG2Y (54.2%), Carrot2Plate (50.0%) and Spoon2Cloth (66.7%) while remaining competi-
tive (79.2%) with my (83.3%) on Eggplant2Bask. UniPI frequently generates action sequences that
diverge from the given instruction in longer-horizon settings, while VPT provides only limited gains,
indicating that IDM-derived pseudo-labels are sensitive to environment shifts. In contrast, ViPRA’s
joint use of latent action prediction and future state modeling yields stronger cross-environment
transfer and more reliable task execution.

ViPRA converts grasps into task completion more reliably. On StackG2Y, OpenVLA achieves
70.8% grasp but only 25.0% success (a 45.8 pt gap), indicating post-grasp placement failures.
ViPRA-AR maintains 66.7% grasp and 66.7% success (0pt gap), and ViPRA-FM 62.5% grasp
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Method Success Rate
UniPI (Du et al., 2023b) 0.00
OpenVLA Kim et al.| (2024) 0.54
7o-FAST (Black et al.||2024) 0.60
o (Black et al.|[2024) 0.85
UniVLA (human) (Bu et al ., [2025) 0.79
UniVLA (all) (Bu et al.,[2025) 0.92
ViPRA 0.79

Table 6: Success rates on LIBERO-10 benchmark.

vs. 54.2% success (8.3 pt gap), evidencing stable transport and release. On Eggplant2Bask, Open-
VLA’s 91.7% grasp falls to 58.3% success (33.4 pt drop), whereas VIPRA-AR (100% — 83.3%) and
ViPRA-FM (91.7% — 79.2%) show markedly smaller drops, consistent with smoother post-grasp
control and accurate instruction following.

E.3 LIBERO LONG BENCHMARK

We also evaluate on LIBERO Long (a.k.a LIBERO 10) (Liu et al., |2023), the most challenging
subset of the LIBERO simulation benchmark. Unlike the Spatial, Object, or Goal subsets, LIBERO
Long focuses on long-horizon manipulation tasks that require sequencing multiple sub-goals with
heterogeneous objects, layouts, and task dependencies. This setting stresses robustness and temporal
compositionality, since errors can accumulate across long horizons.

The evaluation consists of a suite of 10 long-horizon tasks, each paired with a natural lan-
guage goal description. For example, one of the task instructions includes "put the white mug
on the plate and put the chocolate pudding to the right of the plate", requir-
ing reasoning over both symbolic relations (object identities, spatial references) and low-level con-
trol. For each task, the environment is initialized with objects placed in varied locations, increasing
the difficulty of generalization.

Each task is evaluated across 10 runs with 5 different random seeds, and results are reported as
the average reward over all 10 tasks (500 episodes in total). This protocol provides a stringent test
of both semantic grounding and long-horizon policy execution, making LIBERO Long a valuable
complement to SIMPLER’s shorter-horizon manipulation tasks.

E.4 LIBERO LONG RESULTS

On LIBERO-10, which emphasizes long-horizon, multi-stage manipulation, ViPRA achieves a 79%
success rate. This is substantially higher than OpenVLA (54%) and my-FAST (60%), and close
to UniVLA (90%), which is specifically optimized for LIBERO. These results demonstrate that
ViPRA’s motion-centric latent pretraining transfers effectively to simulated long-horizon tasks, out-
performing methods trained primarily with labeled actions or direct policy supervision.

We observe that VIPRA performs reliably on coarse manipulations (e.g., cups, bowls, books), which
are easy to grasp, but struggles with precision grasps such as cylindrical cans that require diameter-
aligned control. We attribute this to delta-EEF drift: since LIBERO’s action space is delta end-
effector, small prediction biases can accumulate over time, leading to imprecise grasps in the absence
of absolute cues to re-anchor the trajectory. For instance, my mitigates this issue by conditioning
on proprioceptive state history and wrist-camera inputs. Despite lacking such additional signals,
ViPRA surpasses OpenVLA under the same sensing setup (image-only, delta-EEF), underscoring
the benefits of motion-centric latent pretraining for long-horizon manipulation.
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F ACTION OUTPUT ANALYSIS

We provide a more in-depth analysis of the action outputs of various policies introduced in Sec-
tion [5.5] highlighting their differences in smoothness, consistency, and suitability for real world
deployment. Policies differ in their action representations and control spaces:

* Absolute Joint Space. ViPRA-FM and LAPA (Ye et al., 2024a)) output full 7D joint posi-
tions (Franka), directly supervised in joint space.

* Delta End-Effector Space. OpenVLA (Kim et al., [2024), my (Black et al.| 2024}, and
operate in 7D Cartesian delta commands (position, Euler rotations, gripper), decoded from
visual inputs.

* Continuous vs Discrete. VIPRA-FM and 7 (Black et al.,[2024)) predict continuous actions
via a flow matching decoder, whereas LAPA (Ye et al., [2024a)) and OpenVLA (Kim et al.,
2024) use quantized logits over discretized action bins.

To better understand the behavioral differences between discrete and continuous policies, we analyze
the predicted action trajectories across different models during closed-loop visual rollout on real
robot observations. We evaluate policies by loading their finetuned checkpoints into our inference
pipeline and simulating replay on the training trajectories from the finetuning dataset. This allows
us to visualize their motor command trends without introducing new generalization factors. In
particular, we compare ViPRA-FM (ours), LAPA (Ye et al.| 2024a)), OpenVLA (Kim et al.| 2024),
and 7 (Black et al., [2024).

LAPA (Ye et al.|[2024b) and OpenVLA (Kim et al.,|2024) rely on a discretization scheme in which
each dimension of the robot’s action space is uniformly quantized into 255 bins using equal-sized
quantiles over the training distribution. That is, for each joint or end-effector dimension, bin bound-
aries are chosen so that each bin contains roughly the same number of training points. This quantile-
based discretization ensures equal data coverage across bins but introduces two key limitations in
how actions are represented and learned:

1. Contact-Sensitive Flipping: At test time, small perturbations in the input (e.g., due to
occlusions or slight viewpoint drift) may cause the model to flip from one bin to another
near the quantile boundary—especially at contact points. Since adjacent bins can correspond
to different action magnitudes, these minor visual shifts can lead to abrupt discontinuities
in motor output.

2. Loss Granularity: The cross-entropy loss used for training treats each action bin as a
distinct class label. As a result, all incorrect predictions are penalized equally, regardless of
how close they are to the ground-truth bin. For example, predicting bin 127 instead of 128
incurs the same loss as predicting bin 0. This is fundamentally at odds with the structure of
continuous action spaces, where the cost of an error should scale with its magnitude.

We hypothesize that the combination of bin boundary flipping and non-metric loss leads to the
spiky or erratic behavior seen in discrete action models, particularly around moments of contact
or high-frequency motion. These effects are amplified in high-dimensional control settings, where
discretization artifacts can arise independently in each action dimension—compounding into visibly
unstable or jerky behaviors across the full joint trajectory.

By contrast, continuous policies such as ViPRA-FM and 7 (Black et al.| 2024) operate directly in
RP using flow matching. These losses naturally reflect the structure of the action space—penalizing
predictions in proportion to how far they deviate from the ground truth. As a result, the output
trajectories tend to be smoother, better aligned with demonstrations, and more robust to perceptual
Jitter.

We note that it may be possible to mitigate some of the above issues by increasing the number of
bins or by using non-uniform binning schemes (e.g., higher resolution in frequently visited regions).
However, these approaches increase model complexity and still inherit the fundamental limitation
of using classification loss in a regression setting. Continuous decoders trained with distance-aware
objectives offer a more natural and principled solution for low-level control.

To gain deeper insight into how different action representations influence control behavior, we ex-
amine the temporal structure of predicted actions across several rollout trajectories. We organize

28



Under review as a conference paper at ICLR 2026

Joint @ Joint 1 Joint 2 Joint 3

—— LAPA
—— ViPRA (ours)

5 o o
N o2 W
3 8 8
5 o o
g 8 2
& 8 3

49 60 80 100 120 o 20 40 60 80 100 120 0 20 40 60 80 100 120

o

0 20 40 60 80 100 120
Joint 4 Joint 5 Joint 6 Gripper

Joint / Gripper Values

o & &
[T
5 = 8
NN N
o bW
& S R
> 3 °
s 8 8
° bW
8 £ B

/
100 120 © 20 40 60 80 100 120 © 20 40 60 80 100 120

Time Steps

=
°
s
&
2
8
8

20 40 60 80 100 120

(a) Absolute joint space. Predicted 7D joint positions over time for VIPRA-FM (blue) and LAPA (Ye et a1.|,
(green). ViPRA-FM produces smooth, continuous trajectories, while LAPA [2024b) exhibits
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(b) Delta end-effector space. Predicted 7D delta actions (position, rotation, gripper) for o
(magenta) and OpenVLA (orange). Although delta control provides structured low-
level modulation, OpenVLA exhibits sharp fluctuations due to discretized output. Notably, the gripper signal
shows large, momentary switches during contact events—resulting in failed grasps or premature object drops.
In contrast, o maintains stable gripper behavior during fine manipulation.

o

Figure 8: Visualization of predicted actions across different control spaces. Discrete policies often pro-
duce sharp discontinuities due to binning artifacts and classification loss, whereas continuous policies exhibit
smoother, dynamics-consistent behavior.

the analysis by control space—absolute joint angles vs. delta end-effector motions—and visualize
per-dimension action trends across time in Figure 8]

These visualizations support our hypothesis: discrete policies, trained with cross-entropy over fixed
bins, tend to produce abrupt transitions around perceptually sensitive regions—especially near bin
boundaries or occlusions. This manifests as random spikes, high-frequency jitter, or contact-time
instability, all of which can destabilize robot behavior in deployment.

In contrast, continuous policies like VIPRA-FM and 7, trained with flow matching losses, yield
consistently smooth, physically plausible actions that better reflect real world constraints. The
ability to interpolate naturally between states—not just classify them—proves critical for robust closed-
loop performance in contact-rich manipulation.
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G REAL WORLD EXPERIMENTS: SETUP, CHALLENGES, AND
OBSERVATIONS

To complement our real world results in Section we provide additional details on our hardware
setup, task design, and policy behavior under realistic sensing and control constraints. We also ana-
lyze generalization to unseen objects, retry behavior, and how chunked continuous actions support
efficient closed-loop control.

G.1 HARDWARE AND DATA COLLECTION SETUP

All experiments are conducted on a real world robotic platform with two 7-DOF Franka Emika
Panda arms. The workspace is observed by a single front-mounted ZED stereo camera. There
are no wrist-mounted or side-view cameras, so all perception is monocular and from a fixed third-
person viewpoint. We use the GELLO teleoperation system (Wu et al., [2023b)) to collect human
demonstrations at 15Hz. Demonstrations are collected directly in task-relevant environments, with
each policy trained using only a single camera view.

Our decision to use image history as part of the observation is motivated by the inherently temporal
nature of the video model architecture, as well as the absence of auxiliary views. Stacking obser-
vations over time allows the model to internally infer dynamics and compensate for occlusions or
ambiguous single-frame cues.

G.2 TASK DESCRIPTIONS AND CHALLENGES

We evaluate policies on three real world single-arm tasks, each with unique control and perception
challenges (Figure [9):

1. Cover-Object: The robot must pick up a piece of cloth and drape it over a specified ob-
ject. This task is challenging due to the deformable nature of cloth, which requires reliable
grasping from the table surface. Slight changes in cloth configuration or object geome-
try can affect dynamics drastically. Generalization requires reasoning over unseen cloth
textures and novel target objects.

2. Pick-Place: The robot must pick up a named object (e.g., sponge, bowl, duck) and place
it on a destination surface (plate or board). Object shapes vary significantly, leading to
different grasp affordances. Grasping a wide bowl vs. a narrow-handled cup requires
distinct motor strategies. The task is highly multimodal—there are multiple correct ways to
perform the task, depending on object shape, pose, and placement surface.

3. Stack-Cups: The robot must follow language instructions to stack a cup of colorl onto a
cup of color2. Success requires grounding object properties and executing precise stacking.
Evaluation setups include unseen cup types, color shades, and geometries to test language
understanding and spatial generalization.

G.3 GENERALIZATION TO NOVEL OBJECTS

A core goal of our real world evaluation is to assess how well the policy generalizes to unseen
object instances and configurations not encountered during training. We design test-time setups that
introduce meaningful variation across tasks:

* Cover-Object: Test scenarios include cloths of varying texture, size, and stiffness, as well
as new target objects such as jars, boxes, and toys. These variations require the policy to
generalize grasp strategies and adapt to deformable material dynamics.

* Pick-Place: We evaluate on previously unseen objects with diverse geometries and affor-
dances (e.g., bowls, mugs, fruits), and destination surfaces of varying size and texture. The
task requires flexible grasping and reliable placement across a range of object shapes and
destination surfaces.

 Stack-Cups: Evaluation includes new cup types with unseen shapes, rim sizes, and fine-
grained color variations. The policy must generalize language grounding to new color
references and execute precise stacking across novel physical configurations.
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Cover-Object Pick-Place Stack-Cups

Train Setup

Test Setup *
(Unseen Objects) ﬂ
pick cloth and pick <obj1> and place pick <coll> cup and
cover <obj> on <obj2> stack on <col2> cup

Task Prompt

Figure 9: Task Setup Overview. (Top row) Training environments for each of the three single-arm manipula-
tion tasks: Cover-0bject, Pick-Place, and Stack-Cups. (Bottom row) Evaluation environments featuring
novel objects, textures, or placements not seen during training. Note the variety in cloth shape, object geometry,
plate type, and cup color/size combinations.

Despite these shifts, our method consistently exhibits robust generalization across all tasks. We
attribute this to the combination of latent dynamics pretraining, language-conditioned perception,
and a unified architecture that integrates semantic, spatial, and temporal cues. Pretraining on diverse
unlabeled videos teaches the model general priors about object motion and interaction. Condition-
ing on task instructions guides object selection and interpretation even in ambiguous or unfamiliar
contexts. Finally, the architectural design ensures that learned representations capture not just ap-
pearance, but how objects behave across time, enabling transfer to new instances that were not
explicitly seen during supervised finetuning.

G.4 RETRYING BEHAVIOR ENABLED BY TEMPORAL PRETRAINING

Our method consistently exhibits robust retry behavior: when an initial grasp attempt fails, due
to occlusion, misalignment, or object shift, the policy often reattempts until successful. This is
especially evident in Cover-0bject, where the robot frequently retries grasping if the cloth slips,
and in Pick-Place, where wide or irregularly shaped objects like bowls may require multiple grasp
attempts from different angles.

We attribute this robustness to our temporal pretraining objective. By learning to predict future
video frames and latent actions over multiple steps, the model develops a sense of longer-horizon
dynamics and recoverability. Rather than depending on single-step feedback, it implicitly plans
through extended temporal context—enabling it to course, correct and persist through partial failures.

G.5 ACTION CHUNKING AND INFERENCE EFFICIENCY

ViPRA produces continuous actions using a chunked flow matching decoder, generating sequences
of 14 actions per inference step. At test time, we cap control frequency by evaluating two rollout
strategies: 7/14 rollout, where the first 7 actions of each chunk are executed before re-planning, and
14/14 rollout, where all 14 actions are executed before the next inference. The former corresponds
to an effective closed-loop update rate of ~3.5 Hz, while the latter doubles this to 7 Hz. Because
predicted action trajectories are smooth and temporally coherent, ViIPRA remains stable even under
open-loop execution within each chunk. This property is particularly beneficial for contact-rich
phases that demand reactive yet jitter-free behavior.

KV caching for fast inference We further optimize inference with key-value (KV) caching. Lan-
guage and image attention states are cached once and reused across flow matching Euler steps, so
only action tokens are recomputed during integration. This reduces redundant computation, enabling
the entire 14-step chunk to be produced in 510 ms (~1.95 Hz), which corresponds to a robot-side
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control frequency of up to 22 Hz. Our setup can stably support control rates approaching 20 Hz, to
our knowledge matched only by one other 7B-parameter model (Kim et al.| 2025)).

Comparison with baselines. Table [/| summarizes model sizes, action rollout lengths, and infer-
ence times. Unlike prior approaches that also use a 7B model (e.g., LAPA and OpenVLA) and
operate at ~200 ms per step but predict only single actions, VIiPRA amortizes inference across long,
smooth action chunks, enabling high frequency reactive control.

Method Model Size  Action Steps  Inference Time (ms)
LAPA (Ye et al.,|2024b) 7B 1 220
OpenVLA (Kim et al.;[2024) 7B 1 190

7o (Black et al.| [2024) 3.3B 16 90

UniPI (Du et al.|[2024) - 16 24000

UVA (Li et al.[[2025) 0.5B 16 230

ViPRA (ViPRA-FM) 7B 14 510

Table 7: Inference speed comparison across models. ViPRA achieves high effective control frequencies by
amortizing computation over action chunks.
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H VIPRA-FM ON CHALLENGING BIMANUAL TASKS

Bimanual manipulation introduces significant complexity beyond single-arm control. The combined
action space spans 14 degrees of freedom, and inter-arm coordination requires precise spatial align-
ment, collision avoidance, and timing consistency. The solution space is also highly multimodal—
there are many valid ways to execute a task depending on object geometry, initial configurations,
and movement variability. These challenges make bimanual tasks a strong test of a policy’s ability
to generalize and coordinate under real world constraints.

H.1 BIMANUAL SETUP

We test our framework using both arms of the Franka Panda robot. While only the right arm per-
forms active grasping, both arms are controlled jointly using a single policy conditioned on shared
language instructions. The system receives monocular observations from a front-mounted ZED
camera and generates chunked continuous actions for both arms in a synchronized control loop.

Place-in-Bowl Mix-with-Whisk

Initial Setup

ViPRA-FM
Mid-task

Task Prompt Pick up <obj> and place in bowl pick up whisk and mix the bowl

Figure 10: Bimanual task execution by ViPRA-FM. (Top row) Initial setup for the two tasks: placing a
tomato into a bowl and mixing with a whisk. (Bottom row) Mid-execution rollout of VIPRA-FM: the right arm
transports the tomato toward the bowl held by the left arm (left), and mixes the contents using the whisk while
the left arm maintains bowl stability (right). These examples highlight coordinated two-arm control and fluent
execution of tool- and object-handling behaviors.

We evaluate two bimanual tasks of increasing complexity:

(1) Place-in-Bowl: The right arm must grasp a target object (e.g., a fruit or kitchen item) and place
it into a bowl held by the left arm. Success requires fine-grained spatial alignment above the bowl,
smooth object transfer, and collision-free approach and retreat trajectories in close proximity to the
support arm.

(2) Mix-with-Whisk: The right arm retrieves a whisk from a nearby basket, mixes the contents
of the bowl, and returns the whisk to its original location. This task involves tool use, curved and
sustained motion, and close-proximity coordination with the left arm, which dynamically maintains
the bowl pose throughout the sequence.

These tasks pose significant challenges for real world bimanual coordination. Both arms must op-
erate in close proximity, requiring precise spatial alignment to avoid collisions—especially during
approach and retreat phases. With only a single fixed camera and no wrist-mounted sensors, the
policy must infer depth and object interactions purely from visual input. Timing mismatches or cal-
ibration drift between the arms can further compound errors, making successful execution sensitive
to both perception and control stability.
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Figure 11: ViPRA-FM rollouts in real world bimanual tasks. Top: Place-in-Bowl - the robot picks up a
tomato and places it into a bowl held by the left arm. Bottom: Mix-with-Whisk - the robot retrieves a whisk,
stirs the bowl contents, and returns the tool. Each sequence shows 10 evenly spaced frames sampled from real
world executions.

H.2 BIMANUAL RESULTS

ViPRA-FM is deployed using 14-step action chunks, executed at 7Hz control frequency. This high-
frequency chunked control allows the policy to maintain smooth, temporally coherent trajectories
while remaining responsive to changing visual inputs. The model also receives short history win-
dows as input, which helps stabilize motion during contact-heavy transitions and multi-step interac-
tions.

In Place-in-Bowl, the robot completes 10 out of 18 trials. Failures were primarily due to unsuc-
cessful grasps caused by the limited span and compliance of our custom 3D-printed gripper, not the
bimanual coordination itself. In all successful grasps, the object was consistently placed into the
bowl without collision or instability. This suggests that the policy reliably handles the spatial rea-
soning and coordination demands of the task, with grasp robustness being the primary bottleneck, a
limitation that could be mitigated with a more capable gripper design.

In Mix-with-Whisk, the robot completes 8 out of 12 trials. The task involves sustained, curved
motion in close proximity to the left arm, requiring continuous spatial alignment between the whisk
and bowl. The policy leverages temporal history to stay anchored to the mixing target and uses its
chunked control output to produce smooth stirring behavior. The whisk’s small, symmetric handle
makes it easier to grasp, allowing the policy to focus on trajectory accuracy and contact stability
throughout the sequence.

Together, these results demonstrate that ViPRA-FM is capable of executing complex bimanual
tasks using a single vision-conditioned policy and continuous action generation. Additional results,
comparisons, and rollout videos will be shared on our project website. https://vipra-robot.
github.io.
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